Transcriptional repression of p53 by human T-cell leukemia virus type I Tax protein. 1995

M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
Department of Microbiology, Colorado State University, Fort Collins 80523, USA.

The human T-cell leukemia virus type I oncoprotein Tax transcriptionally deregulates a wide variety of viral and cellular genes. Tax deregulation of gene expression is mediated through interaction with a variety of structurally unrelated cellular transcription factors, as Tax does not bind DNA in a sequence-specific manner. Although most of these cellular transcription factors have been shown to mediate activation by Tax, we have recently demonstrated that members of the basic helix-loop-helix (bHLH) family of transcription factors, which play a critical role in progression through the cell cycle, mediate repression by Tax. In this report, we examined whether Tax might repress transcription of the tumor suppressor p53, as the p53 gene has recently been demonstrated to be regulated by the bHLH protein c-Myc. Furthermore, loss or inactivation of the p53 gene has been shown to be causally associated with oncogenic transformation. We show that Tax represses transcription of the p53 gene and that this repression is dependent upon the bHLH recognition element in the p53 promoter. Together, these results suggest that Tax may promote malignant transformation through repression of p53 transcription.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol
D016158 Genes, p53 Tumor suppressor genes located on the short arm of human chromosome 17 and coding for the phosphoprotein p53. Genes, TP53,TP53 Genes,p53 Genes,Gene, TP53,Gene, p53,TP53 Gene,p53 Gene
D016271 Proto-Oncogene Proteins c-myc Basic helix-loop-helix transcription factors encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis. L-myc Proteins,N-myc Proteins,c-myc Proteins,myc Proto-Oncogene Proteins,p62(c-myc),Proto-Oncogene Products c-myc,Proto-Oncogene Proteins myc,myc Proto-Oncogene Product p62,p62 c-myc,L myc Proteins,N myc Proteins,Proteins myc, Proto-Oncogene,Proto Oncogene Products c myc,Proto Oncogene Proteins c myc,Proto Oncogene Proteins myc,Proto-Oncogene Proteins, myc,c myc Proteins,myc Proto Oncogene Product p62,myc Proto Oncogene Proteins,myc, Proto-Oncogene Proteins,p62 c myc
D016356 Gene Products, tax Transcriptional trans-acting proteins of the promoter elements found in the long terminal repeats (LTR) of HUMAN T-LYMPHOTROPIC VIRUS 1 and HUMAN T-LYMPHOTROPIC VIRUS 2. The tax (trans-activator x; x is undefined) proteins act by binding to enhancer elements in the LTR. Trans-Activator Protein p40(tax),Trans-Activator Protein p40(x),p40(tax),tax Gene Products,tax Protein,Gene Product, tax,Trans-Activator Protein p40(lor),Trans-Activator Protein p40x,Trans-Activator Protein pX,Transactivator Protein p40(x),Transactivator p40(tax),Transforming Antigen p40x,p40 tax,Antigen p40x, Transforming,Trans Activator Protein p40x,Trans Activator Protein pX,p40x, Trans-Activator Protein,p40x, Transforming Antigen,pX, Trans-Activator Protein,tax Gene Product

Related Publications

M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
March 2001, Journal of virology,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
April 2005, The Journal of biological chemistry,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
January 1989, The Tohoku journal of experimental medicine,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
August 2004, Retrovirology,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
July 1996, Nihon rinsho. Japanese journal of clinical medicine,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
September 1989, Journal of virology,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
June 2008, Cancer research,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
June 2000, The Journal of biological chemistry,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
May 1992, Molecular and cellular biology,
M N Uittenbogaard, and H A Giebler, and D Reisman, and J K Nyborg
July 2005, International journal of cancer,
Copied contents to your clipboard!