Efferent projections of the paraventricular thalamic nucleus in the rat. 1995

M M Moga, and R P Weis, and R Y Moore
Department of Psychiatry, University of Pittsburgh Medical Center, Pennsylvania 15261, USA.

The paraventricular nucleus of the thalamus (PVT) receives input from all major components of the circadian timing system, including the suprachiasmatic nucleus (SCN), the intergeniculate leaflet and the retina. For a better understanding of the role of this nucleus in circadian timing, we examined the distribution of its efferent projections using the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). The efferent projections of the PVT are loosely organized along its dorsal-ventral and anterior-posterior axes. The anterior PVT sends projections to the SCN; the dorsomedial and ventromedial hypothalamic nuclei; the lateral septum; the bed nucleus of the stria terminalis; the central and basomedial amygdaloid nuclei; the anterior olfactory nucleus; the olfactory tubercle; the nucleus accumbens; the infralimbic, piriform, and perirhinal cortices; the ventral subiculum; and the endopiriform nucleus. A small PHA-L injection, restricted to the ventral portion of the anterior PVT, produces a similar pattern of labeling, except for a marked decrease in the number of labeled fibers in the hypothalamus, cortex, and lateral septum and an increase in labeling in the endopiriform nucleus and basolateral amygdaloid nucleus. The posterior PVT has a more limited efferent distribution than the anterior PVT, terminating in the anterior olfactory nucleus; the olfactory tubercle; the nucleus accumbens; and the central, basolateral, and basomedial nuclei of the amygdala. Our results show that the anterior PVT is ideally situated to relay circadian timing information from the SCN to brain areas involved in visceral and motivational aspects of behavior and to provide feedback regulation of the SCN.

UI MeSH Term Description Entries
D008297 Male Males
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013266 Stilbamidines STILBENES with AMIDINES attached.

Related Publications

M M Moga, and R P Weis, and R Y Moore
November 1985, Brain research,
M M Moga, and R P Weis, and R Y Moore
January 1987, Neuroscience letters,
M M Moga, and R P Weis, and R Y Moore
November 2008, Brain research,
M M Moga, and R P Weis, and R Y Moore
July 1977, Brain research,
Copied contents to your clipboard!