An atlas of aromatase mRNA expression in the zebra finch brain. 1995

P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
Mental Retardation Research Center, University of California, Los Angeles 90095, USA.

Neural conversion of androgen to estrogen by aromatase is an important step in the development and expression of masculine behavior in mammals and birds. In contrast to the low telencephalic levels of aromatase in adult mammals and nonsongbirds, the zebra finch telencephalon possesses high aromatase activity. This study maps, by in situ hybridization, cells that express aromatase mRNA in the adult zebra finch telencephalon, diencephalon, midbrain, and pons. High aromatase mRNA expression was observed in the caudal neostriatum, limbic archistriatum, and hypothalamus. The hippocampus, parahippocampal area, and hyperstriatum accessorium contained cells expressing moderate amounts of aromatase message. Weakly labeled cells were found in the rostral neostriatum, lobus parolfactorius, and mesencephalic reticular formation. These findings are consistent with aromatase activity measurements of zebra finch tissue and document with anatomical precision both the widespread expression of aromatase mRNA in the brain and novel sites of brain aromatase. This study identifies the caudal neostriatum as a major site of telencephalic aromatase. A previous survey (Gahr et al., 1993: J. Comp. Neurol. 327:112-122) of several avian species found that the presence of estrogen receptors in parts of the caudal neostriatum is unique to songbirds, which are the only birds to possess the elaborated telencephalic song system. Together, these findings suggest that the heightened estrogen synthesis and estrogen sensitivity of the passerine caudal neostriatum may have some functional relation with the telencephalic circuits responsible for song.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001141 Aromatase An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system. CYP19,Cytochrome P-450 CYP19,Cytochrome P-450(AROM),Androstenedione Aromatase,CYP 19,CYP19 Protein,Cytochrome P450 19,Estrogen Synthase,Estrogen Synthetase,P450AROM,Aromatase, Androstenedione,Cytochrome P 450 CYP19,Protein, CYP19
D001717 Birds Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves. Aves,Bird
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013687 Telencephalon The anterior subdivision of the embryonic PROSENCEPHALON or the corresponding part of the adult prosencephalon that includes the cerebrum and associated structures. Endbrain,Endbrains

Related Publications

P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
November 1999, Gene,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
August 2020, The Journal of comparative neurology,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
July 2004, The Journal of comparative neurology,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
May 2003, Journal of neurobiology,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
March 2016, Journal of neurochemistry,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
January 1999, Developmental neuroscience,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
November 2013, The Journal of comparative neurology,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
August 2006, Brain research,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
April 1994, General and comparative endocrinology,
P Shen, and B A Schlinger, and A T Campagnoni, and A P Arnold
January 2007, Developmental neurobiology,
Copied contents to your clipboard!