Genomic fingerprinting Acinetobacter baumannii: amplification of multiple inter-repetitive extragenic palindromic sequences. 1995

C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
Medical Sciences Section, Regional Technical College, Cork, Ireland.

Acinetobacter species are important nosocomial pathogens. A rapid and sensitive identification system, capable of providing strain identity at the genetic level, is required to identify outbreak strains and facilitate the early implementation of infection control procedures. Repetitive extragenic palindromic (REP) elements, have been identified in numerous bacteria and these genomic sequences provide useful targets for DNA amplification. A method for amplifying inter-REP DNA sequences, REP-multiple arbitrary amplicon profiling (REP-MAAP), is described and applied to 29 Acinetobacter baumannii from clinical samples. Amplified polymorphic DNA patterns were demonstrated for all isolates and those displaying identical REP-MAAP patterns were considered identical at the genetic level. In the spring of 1993, 10 intensive care unit patients had endotracheal colonization with A. baumannii (five with REP-MAAP I and five with REP-MAAP II patterns). These findings suggested nosocomial transmission of organisms which was terminated by standard infection control measures. No further A. baumannii were detected until the winter of 1993 when isolates of different REP-MAAP groups emerged, suggesting that factors other than nosocomial transmission were implicated.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003428 Cross Infection Any infection which a patient contracts in a health-care institution. Hospital Infections,Nosocomial Infections,Health Care Associated Infection,Health Care Associated Infections,Healthcare Associated Infections,Infection, Cross,Infections, Hospital,Infections, Nosocomial,Cross Infections,Healthcare Associated Infection,Hospital Infection,Infection, Healthcare Associated,Infection, Hospital,Infection, Nosocomial,Infections, Cross,Infections, Healthcare Associated,Nosocomial Infection
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000150 Acinetobacter A genus of gram-negative bacteria of the family MORAXELLACEAE, found in soil and water and of uncertain pathogenicity. Herellea,Mima
D000151 Acinetobacter Infections Infections with bacteria of the genus ACINETOBACTER. Mimae Infections,Infections, Acinetobacter,Infections, Mimae,Acinetobacter Infection,Infection, Acinetobacter,Infection, Mimae,Mimae Infection
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016172 DNA Fingerprinting A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population. DNA Fingerprints,DNA Profiling,DNA Typing,Genetic Fingerprinting,DNA Fingerprint,DNA Fingerprintings,DNA Profilings,DNA Typings,Fingerprint, DNA,Fingerprinting, DNA,Fingerprinting, Genetic,Fingerprintings, DNA,Fingerprintings, Genetic,Fingerprints, DNA,Genetic Fingerprintings,Profiling, DNA,Typing, DNA,Typings, DNA

Related Publications

C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
August 1999, Journal of medical microbiology,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
April 2002, Nucleic acids research,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
May 2005, The Journal of hospital infection,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
July 1984, Cell,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
January 1985, Gene,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
June 1984, The EMBO journal,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
March 2006, BMC genomics,
C Sheehan, and M Lynch, and C Cullen, and B Cryan, and P Greer, and S Fanning
April 2005, Research in microbiology,
Copied contents to your clipboard!