Activity in the caudate nucleus of monkey during spatial sequencing. 1995

I Kermadi, and J P Joseph
Laboratoire Vision et Motricité, Institut National de la Santé et de la Recherche Médicale U94, Bron, France.

1. There are indications that the execution of behavioral sequences involves the basal ganglia. In this study we examined the role of the caudate nucleus in the construction, storage, and execution of spatial plans. 2. Two monkeys (Macaca mulatta) were trained to perform sequences of saccades and arm movements. The animals had to remember the order of illumination, variable from one sequence to another, of three fixed spatial targets. After a delay, they had to visually orient toward, and press each target in the same order. Six different sequences were executed on the basis of the order of illumination of the targets. Single cell activity was recorded from the four caudate nuclei of the two monkeys. 3. Neural activity was analyzed in each sequence during 10 different periods: the instruction period in which the targets were illuminated, the three orientation periods toward the different targets, the three postsaccadic periods, and the three periods of target pressing. Statistical comparisons were made to detect differences between the different sequences with respect to activity in each period (sequence specificity). 4. A total of 2,100 neurons were studied, of which 387 were task related. The task-related cells were found in both the head and the body of the caudate nucleus. 5. During central fixation, anticipatory activity (n = 81) preceded onset of specific events. Four groups were considered: 1) neurons (n = 46) anticipating offset of the central fixation point, 2) neurons (n = 7) anticipating the illumination of any target, regardless of its spatial position or order of presentation (rank), 3) neurons (n = 17) anticipating the illumination of the first target, regardless of its spatial position, and 4) neurons (n = 11) anticipating the illumination of a given target, regardless of its rank. 6. Phasic visual responses to target onset were observed in 48 cells. The cells responded primarily to the contralateral and upper targets. In a majority (n = 35), visual responses were modulated by the rank of the target(s). Many cells (n = 20) responded only if the corresponding target was first; other cells responded only if the target was second or if it had complex time relationships with the other targets. 7. The responses of the cells to the same instruction stimuli repeated twice in a row, and under the condition that the animal did not behaviorally use the first instruction in between, were tested. More than one-third of the tested cells (n = 14) did not respond, or responded very weakly, to the second instruction.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001132 Arm The superior part of the upper extremity between the SHOULDER and the ELBOW. Brachium,Upper Arm,Arm, Upper,Arms,Arms, Upper,Brachiums,Upper Arms
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013037 Spatial Behavior Reactions of an individual or groups of individuals with relation to the immediate surrounding area including the animate or inanimate objects within that area. Behavior, Spatial,Behaviors, Spatial,Spatial Behaviors
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

I Kermadi, and J P Joseph
January 1986, Experimental brain research,
I Kermadi, and J P Joseph
January 1974, Neirofiziologiia = Neurophysiology,
I Kermadi, and J P Joseph
January 2002, Journal of neurophysiology,
I Kermadi, and J P Joseph
January 1993, Experimental brain research,
I Kermadi, and J P Joseph
February 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Kermadi, and J P Joseph
July 2002, Nature,
Copied contents to your clipboard!