Effects of different growth conditions on the in vivo activity of the tandem Escherichia coli ribosomal RNA promoters P1 and P2. 1995

B Liebig, and R Wagner
Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany.

We have analyzed the relative activities of the Escherichia coli ribosomal RNA promoters P1 and P2 in vivo under different physiological conditions. Promoter efficiencies were determined by quantitative comparison of the transcript-specific primer extension products obtained from total RNA preparations. Cells were analyzed at different stages of the growth cycle, at different growth rates, and under conditions of stringent control. In addition, the rRNA gene dosage was altered by transformation with plasmids containing additional rrnD or rrnB transcription units, or rRNA operons in which one of the tandem promoters (P1) had been deleted. Under conditions of amino acid starvation (stringent control) we observed the expected strong reduction in P1-directed transcription. In contrast to the previous assumption that the P2 promoter is not regulated, we simultaneously noticed a smaller but significant repression of P2-directed transcription. In strains in which the rRNA gene dosage was increased by transformation with plasmids bearing rRNA transcription units, a similar degree of repression was observed. Repression of the P1 promoter activity was increased, however, when cells contained extra rRNA operons with P2 promoters only. As demonstrated under stringent control conditions, changes in the growth cycle also affected the activity of promoters P1 and P2. A greater proportion of P2-derived transcripts was observed when cells changed from exponential to stationary growth or if cultures were grown in minimal medium. Under steady-state, slow growth conditions (minimal medium) we obtained evidence showing that the ratio of P1/P2 transcription products is much lower for cells with extra rrnB as compared to extra rrnD operons or cells lacking extra rRNA operons, implying an operon-specific regulation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

B Liebig, and R Wagner
May 1979, Cell,
B Liebig, and R Wagner
January 1985, Molecular & general genetics : MGG,
B Liebig, and R Wagner
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
B Liebig, and R Wagner
June 2006, The Journal of biological chemistry,
B Liebig, and R Wagner
September 1992, Oncogene,
B Liebig, and R Wagner
November 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!