Stage-specific DNA synthesis of rat spermatogenesis as an indicator of genotoxic effects of vinblastine, mitomycin C and ionizing radiation on rat spermatogonia and spermatocytes. 1995

T Sjöblom, and M Parvinen, and J Lähdetie
Department of Medical Genetics, University of Turku, Finland.

We have studied the effects of three known mutagens: vinblastine sulphate, mitomycin C and local irradiation of testes on the stage-specific DNA synthesis in the rat testis by using transillumination assisted microdissection of rat seminiferous tubules. It enables us to investigate the sensitivity of different types of spermatogonia and preleptotene spermatocytes to the genotoxic effects of these agents. According to our results, spermatogonia and preleptotene spermatocytes are quite resistant to the action of vinblastine at the treatment times and the doses used. After treatment with mitomycin C, type A2, A3 and A4 spermatogonia seem to be the first cell types affected, which shows itself as a reduction in the DNA synthesis at stages I, II-III, XIII-XIV of the epithelial cycle two and/or three days after the treatment. It also seems that they are mostly affected during the S-phase of their cell cycles. In addition, preleptotene spermatocytes are also sensitive to the action of mitomycin C when they are treated in the G1 phase of the cell cycle. The local irradiation of 3 Gy has severe effects on the spermatogonia of rat testis which can be seen already 18 h after the treatment and becomes more evident 42 and 66 h after the treatment as a reduction of DNA synthesis at stages XII-V. Type A spermatogonia (A1-A4) seem to be the most sensitive cell types to the action of irradiation. This study indicates that the novel method of stage-specific DNA synthesis in rat spermatogenesis allows detailed studies of sensitivities in differentiating spermatogonia to genotoxic agents.

UI MeSH Term Description Entries
D008297 Male Males
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013090 Spermatocytes Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS. Spermiocytes,Spermatocyte,Spermiocyte
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis
D013092 Spermatogenesis-Blocking Agents Chemical substances which inhibit the process of spermatozoa formation at either the first stage, in which spermatogonia develop into spermatocytes and then into spermatids, or the second stage, in which spermatids transform into spermatozoa. Spermatogenesis Blocking Agents,Agents, Spermatogenesis Blocking,Agents, Spermatogenesis-Blocking
D013093 Spermatogonia Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES. Spermatophores,Spermatogonias,Spermatophore

Related Publications

T Sjöblom, and M Parvinen, and J Lähdetie
March 1993, Mutation research,
T Sjöblom, and M Parvinen, and J Lähdetie
January 1985, Zeitschrift fur Naturforschung. Section C, Biosciences,
T Sjöblom, and M Parvinen, and J Lähdetie
December 1982, Experimental cell research,
T Sjöblom, and M Parvinen, and J Lähdetie
July 1973, Mutation research,
T Sjöblom, and M Parvinen, and J Lähdetie
January 1985, Acta radiologica. Oncology,
T Sjöblom, and M Parvinen, and J Lähdetie
June 2020, International journal of molecular sciences,
T Sjöblom, and M Parvinen, and J Lähdetie
January 1984, Cell and tissue research,
T Sjöblom, and M Parvinen, and J Lähdetie
March 1999, International journal of radiation biology,
T Sjöblom, and M Parvinen, and J Lähdetie
December 2016, Regulatory toxicology and pharmacology : RTP,
T Sjöblom, and M Parvinen, and J Lähdetie
January 1974, Archives de biologie,
Copied contents to your clipboard!