Synthesis of poly(ADP-ribose) in asbestos treated rat pleural mesothelial cells in culture. 1995

H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
Laboratory of Environmental Cellular and Molecular Pathology, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Henri Mondor, Institut Mondor de Médecine Moléculaire, Faculté de Médecine, Créteil, France.

To investigate the origin of DNA repair in rat pleural mesothelial cells (RPMC) exposed to asbestos fibers, poly(ADP-ribose) polymerase (PARP) activity was measured in the asbestos-treated cells. As bleomycin has been shown to activate poly(ADP-ribose) synthesis in several cell systems, the response to bleomycin with regard to PARP assay was first investigated. Bleomycin produced a dose-dependent increase of poly(ADP-ribose) synthesis in RPMC. Likewise both chrysotile and crocidolite fibers produced a concentration-dependent PARP activation indicating that the formation of DNA strand breaks is one type of damage produced by asbestos in RPMC. Enhancement of DNA repair, assessed by the measurement of [3H] methylthymidine incorporation in growth arrested cells, was not detectable in the presence of 3-methoxybenzamide (3-MBA), a PARP inhibitor, confirming a relation between PARP activation and DNA repair. The participation of DNA breakage in asbestos toxicity on RPMC was determined by the colorimetric 3-4(5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. There was no relationship between DNA breakage and cytotoxicity since the use of PARP inhibitors did not change cell viability. These results indicate that asbestos produce DNA damage that is repaired in RPMC.

UI MeSH Term Description Entries
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009536 Niacinamide An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Nicotinamide,Vitamin B 3,Vitamin PP,3-Pyridinecarboxamide,Enduramide,Nicobion,Nicotinsäureamid Jenapharm,Papulex,Vitamin B3,3 Pyridinecarboxamide,B 3, Vitamin,B3, Vitamin,Jenapharm, Nicotinsäureamid
D010994 Pleura The thin serous membrane enveloping the lungs (LUNG) and lining the THORACIC CAVITY. Pleura consist of two layers, the inner visceral pleura lying next to the pulmonary parenchyma and the outer parietal pleura. Between the two layers is the PLEURAL CAVITY which contains a thin film of liquid. Parietal Pleura,Visceral Pleura,Pleura, Parietal,Pleura, Visceral
D011064 Poly Adenosine Diphosphate Ribose A polynucleotide formed from the ADP-RIBOSE moiety of nicotinamide-adenine dinucleotide (NAD) by POLY(ADP-RIBOSE) POLYMERASES. Poly ADP Ribose,Poly(ADP-Ribose),Poly-ADPR,Poly-Adenosine Diphosphate-Ribose,ADP Ribose, Poly,Diphosphate-Ribose, Poly-Adenosine,Poly ADPR,Ribose, Poly ADP
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D001761 Bleomycin A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. BLEO-cell,Blanoxan,Blenoxane,Bleolem,Bleomicina,Bleomycin A(2),Bleomycin A2,Bleomycin B(2),Bleomycin B2,Bleomycin Sulfate,Bleomycins,Bleomycinum Mack,Bléomycine Bellon,BLEO cell,BLEOcell,Bellon, Bléomycine,Mack, Bleomycinum,Sulfate, Bleomycin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
February 1981, In vitro,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
November 1991, Agents and actions,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
May 2000, Mutagenesis,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
December 1979, Nature,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
January 2001, Teratogenesis, carcinogenesis, and mutagenesis,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
September 1997, Environmental health perspectives,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
August 1990, Mutation research,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
January 2001, Journal of investigative medicine : the official publication of the American Federation for Clinical Research,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
December 1987, European journal of biochemistry,
H Y Dong, and A Buard, and F Lévy, and A Renier, and F Laval, and M C Jaurand
September 1983, Environmental health perspectives,
Copied contents to your clipboard!