Nicotine increases intracellular calcium in rat hippocampal neurons via voltage-gated calcium channels. 1995

G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
School of Biology and Biochemistry, University of Bath, UK.

The effect of nicotinic receptor activation on intracellular calcium concentrations ([Ca2+]i) was quantitated in populations of cultured hippocampal neurons loaded with Fura-2. Nicotine (50 microM) and cytisine (50 microM) increased [Ca2+]i by 100%. This response was abolished in the presence of the nicotinic antagonist methyllycaconitine (MLA) whereas KCl-evoked increases in [Ca2+]i were insensitive to MLA. Glial cultures were unaffected by nicotine, although they did respond to glutamate with increased [Ca2+]i. In hippocampal neurons, responses to nicotinic agonists and KCl were dependent on the presence of extracellular Ca2+ and were similarly sensitive (85% inhibition) to CdCl2. These results are consistent with the presence of functional nicotinic receptors on hippocampal neurons. The receptors appear to elevate [Ca2+]i by promoting the influx of extracellular Ca2+ through voltage-gated calcium channels.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011807 Quinolizines
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000157 Aconitine A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. Acetylbenzoylaconine,Aconitane-3,8,13,14,15-pentol, 20-ethyl-1,6,16-trimethoxy-4-(methoxymethyl)-, 8-acetate 14-benzoate, (1alpha,3alpha,6alpha,14alpha,15alpha,16beta)-,Acetylbenzoyl-aconine,Acetylbenzoyl aconine
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant

Related Publications

G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
January 1992, Ion channels,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
December 2017, CNS neuroscience & therapeutics,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
July 2009, Neurochemical research,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
March 2004, Acta pharmacologica Sinica,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
January 2003, Neuroscience,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
January 2005, European journal of pharmacology,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
August 2003, Acta pharmacologica Sinica,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
July 1990, Journal of neurophysiology,
G E Barrantes, and C T Murphy, and J Westwick, and S Wonnacott
January 2005, Neuroscience,
Copied contents to your clipboard!