DNA binding sites for the transcriptional activator/repressor YY1. 1995

R P Hyde-DeRuyscher, and E Jennings, and T Shenk
Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, NJ 08544-1014, USA.

YY1 is ubiquitously expressed zinc finger DNA binding protein. It can act as a transcriptional repressor or activator and, when binding at the initiator element, as a component of the basal transcription complex. Binding sites for YY1 have been reported in a wide variety of promoters and they exhibit substantial diversity in their sequence. To better understand how YY1 interacts with DNA and to be able to predict the presence of YY1 sites in a more comprehensive fashion, we have selected YY1 binding sites from a random pool of oligonucleotides. The sites display considerable heterogeneity, but contain a conserved 5'-CAT-3' core flanked by variable regions, generating the consensus 5'-(C/g/a)(G/t)(C/t/a)CATN(T/a)(T/g/c)-3', where the upper case letters represent the preferred base. This high degree of flexibility in DNA recognition can be predicted by modeling the interaction of the four YY1 zinc fingers with DNA and a detailed model for this interaction is presented and discussed.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

R P Hyde-DeRuyscher, and E Jennings, and T Shenk
July 2008, Biopolymers,
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
August 2009, BMC molecular biology,
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
February 2012, Biochemical and biophysical research communications,
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
June 1998, Current opinion in cell biology,
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
December 1985, Cell,
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
June 1991, The EMBO journal,
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
March 1996, Yeast (Chichester, England),
R P Hyde-DeRuyscher, and E Jennings, and T Shenk
January 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!