Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. 1993

A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania 15213.

Using a controlled cortical impact model of traumatic brain injury (TBI) coupled with tissue microdialysis, interstitial concentrations of aspartate and glutamate (together with serine and glutamine) were assessed in rat frontal cortex. Histological analysis indicated that the severity of injury following severe TBI (depth of deformation = 3.5 mm) was approximately twice that occurring following moderate TBI (depth of deformation = 1.5 mm). Both groups demonstrated significant postinjury maximal increases in excitatory amino acid (EAA) concentration, which were proportional to the severity of injury. The mean +/- SEM fold increase in dialysate concentrations of aspartate was 38 +/- 13 (n = 5) for moderate TBI and 74 +/- 12 (n = 5) for severe TBI. Fold increases in glutamate concentrations were 81 +/- 26 and 144 +/- 23 for moderate and severe TBI, respectively. Although these increases normalized within 20-30 min following moderate TBI, concentrations of aspartate and glutamate took > 60 min to normalize after severe TBI. Changes in levels of nontransmitter amino acids were much smaller. Fold increases for serine concentrations were 4.6 +/- 0.6 and 7.6 +/- 1.7 in moderate and severe TBI, respectively; glutamine concentrations had similar small fold increases (2.6 +/- 0.2 and 4.1 +/- 0.6, respectively). Calculation of interstitial concentrations following severe TBI indicated that aspartate and glutamate maximally increased to 123 +/- 20 and 414 +/- 66 microM, respectively. To determine the extent to which such tissue concentrations of EAAs could contribute to the injury seen in TBI, the EAA receptor agonists N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid were slowly injected into rat cortex. Remarkably similar histological injuries were produced by this procedure, supporting the notion that TBI is an excitotoxic injury.

UI MeSH Term Description Entries
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
August 2014, Journal of visualized experiments : JoVE,
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
January 2018, Methods in molecular biology (Clifton, N.J.),
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
January 2021, Methods in molecular biology (Clifton, N.J.),
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
October 1991, Journal of neuroscience methods,
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
April 2024, The Journal of surgical research,
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
January 2014, Frontiers in neurology,
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
January 1988, Journal of neurotrauma,
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
August 2019, Journal of visualized experiments : JoVE,
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
January 2018, Methods in molecular biology (Clifton, N.J.),
A M Palmer, and D W Marion, and M L Botscheller, and P E Swedlow, and S D Styren, and S T DeKosky
June 2018, Metallomics : integrated biometal science,
Copied contents to your clipboard!