On the relationship between the mitochondrial inner membrane anion channel and the adenine nucleotide translocase. 1994

M F Powers, and L L Smith, and A D Beavis
Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008.

The mitochondrial inner membrane anion channel (IMAC) is a transport pathway which is believed to be involved in mitochondrial volume homeostasis. The protein, however, has not been identified. In this paper, we examine the relationship between IMAC and the adenine nucleotide translocator. Many inhibitors of the adenine nucleotide translocase are shown to block IMAC, including Cibacron blue 3GA, bromcresol green, alizarin red S, agaric acid, palmitoyl-CoA, and the fluorescein derivatives erythrosin B, erythrosin isothiocyanate, rose bengal, and eosin Y. The following evidence suggests that Cibacron blue, agaric acid, and palmitoyl-CoA inhibit by binding to a common site. 1) They all only partially block the transport of small anions such as Cl-, NO3-, and HCO3-, but completely block the transport of larger anions such as malonate. 2) They decrease the IC50 values of each other in a manner consistent with competitive binding. 3) N-Ethylmaleimide decreases their IC50 values by a similar extent. 4) Inhibition by all shows no dependence on matrix pH and only a small dependence on medium pH. It is suggested that these agents may selectively bind to an open state of IMAC and inhibit by decreasing its conductance. The physiological nucleotides CoA, NAD+, NADH, NADP+, NADH, and ATP do not inhibit; in fact, IMAC is shown to transport ATP. Despite these similarities between IMAC and the adenine nucleotide translocase, IMAC appears to be a separate entity, since some of the IC50 values differ by up to 8-fold, and carboxyatracyloside, the most selective inhibitor of the adenine nucleotide translocase, has no effect on IMAC. In addition, IMAC is also able to transport AMP, while the adenine nucleotide translocase does not.

UI MeSH Term Description Entries
D006997 Hypochlorous Acid An oxyacid of chlorine (HClO) containing monovalent chlorine that acts as an oxidizing or reducing agent. Hypochlorite,Hypochlorous Acids
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D000226 Mitochondrial ADP, ATP Translocases A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization. ADP,ATP Carrier,ADP,ATP Translocator Protein,Adenine Nucleotide Translocase,ADP Translocase,ATP Translocase,ATP,ADP-Carrier,ATP-ADP Translocase,Adenine Nucleotide Carrier (Mitochondrial),Mitochondrial ADP-ATP Carriers,ADP-ATP Carriers, Mitochondrial,Mitochondrial ADP ATP Carriers
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion

Related Publications

M F Powers, and L L Smith, and A D Beavis
September 1991, The Journal of biological chemistry,
M F Powers, and L L Smith, and A D Beavis
February 2004, The Journal of biological chemistry,
M F Powers, and L L Smith, and A D Beavis
December 2008, Human molecular genetics,
M F Powers, and L L Smith, and A D Beavis
January 2006, Biophysical journal,
M F Powers, and L L Smith, and A D Beavis
December 1985, Biochimica et biophysica acta,
M F Powers, and L L Smith, and A D Beavis
August 1988, FEBS letters,
M F Powers, and L L Smith, and A D Beavis
April 1996, Journal of bioenergetics and biomembranes,
M F Powers, and L L Smith, and A D Beavis
January 2013, Oxidative medicine and cellular longevity,
Copied contents to your clipboard!