Multiple effects of SK&F 96365 on ionic currents and intracellular calcium in human endothelial cells. 1994

G Schwarz, and G Droogmans, and B Nilius
Max Planck Group Molecular and Cellular Physiology, University Leuven, Belgium.

1. Multiple effects of the imidazole compound SK&F 96365 have been evaluated on endothelial cells from human umbilical vein using a combined patch clamp and Ca(2+)-microfluorimetric technique (Fura-2). 2. At concentrations of 100 mumol/l or higher of SK&F 96365, the block of the receptor-mediated Ca2+ entry overlaps with the activation of another Ca(2+)-entry mechanism, which is associated with a non selective cationic current. 3. This rise in [Ca2+]i depends on the extracellular Ca(2+)-concentration, and the entry pathway is in contrast with the receptor-mediated Ca(2+)-entry pathway permeable to Ni2+, as shown by quenching of the Fura-2 fluorescence signal. 4. The concentration of SK&F 96365 for half maximal increase in [Ca2+]i was 141 +/- 19 mumol/l (n = 16). 5. SK&F 96365 activated a current that reversed at +11.8 +/- 2.1 mV (n = 21) when measured using nystatin-perforated patches with either Cs+ or K+ in the pipette and 140 Na+, 1.5 Ca2+ in the bath (chloride equilibrium potential ECl = -36 mV). 6. SK&F 96365 (200 mumol/l) blocked an inwardly rectifying K+ current in endothelial cells independently of [Ca2+]i. This block caused depolarization of the endothelial cells from -55.3 +/- 2.57 mV (n = 33) to -10 +/- 5.5 mV (n = 6). This block was concentration-dependent, half maximal block occurred at a concentration of about 40 mumol/l SK&F 96365. 7. In cells which showed an outwardly rectifying current, this outward component was also completely blocked by 200 mumol/l SK&F 96365. 8. It is concluded that SK&F 96365 reversibly activates a non-selective cation channel at concentrations higher than 100 mumol/l, but also blocks K+ currents in endothelial cells independently of [Ca2+]i. These multiple effects overlap with the proposed block of receptor-mediated Ca2+ entry. The block of K(+)-channels may in unclamped cells reduce the driving force for Ca2+, and thereby interfere with the Ca(2+)-influx.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D026902 Potassium Channel Blockers A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS. Channel Blockers, Potassium,Potassium Channel Blocker,Blocker, Potassium Channel,Blockers, Potassium Channel,Channel Blocker, Potassium

Related Publications

G Schwarz, and G Droogmans, and B Nilius
October 1992, Experimental cell research,
G Schwarz, and G Droogmans, and B Nilius
August 1992, Biochemical and biophysical research communications,
G Schwarz, and G Droogmans, and B Nilius
October 1990, The Biochemical journal,
G Schwarz, and G Droogmans, and B Nilius
March 1992, Molecular pharmacology,
G Schwarz, and G Droogmans, and B Nilius
June 1991, Biochemical and biophysical research communications,
G Schwarz, and G Droogmans, and B Nilius
March 1993, Pflugers Archiv : European journal of physiology,
G Schwarz, and G Droogmans, and B Nilius
January 1993, Hypertension (Dallas, Tex. : 1979),
G Schwarz, and G Droogmans, and B Nilius
March 1996, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!