Administration of growth hormone (GH), but not insulin-like growth factor-I (IGF-I), by continuous infusion can induce the formation of the 150-kilodalton IGF-binding protein-3 complex in GH-deficient rats. 1994

S E Gargosky, and P Tapanainen, and R G Rosenfeld
Department of Pediatrics, Oregon Health Sciences University, Portland 97201-3041.

In the adult circulation, 70-90% of the serum insulin-like growth factors (IGFs) are carried by IGF-binding protein-3 (IGFBP-3), which exists as part of a 150-kilodalton (kDa) ternary complex including IGF and an acid-labile subunit (ALS). We have examined the hormonal regulation and molecular distribution of IGFBP-3 in the circulation of a uniquely GH-deficient (GHD) rat model. For 7 days, GHD rats were given GH by either twice daily injections (1 mg/kg) or continuous infusion (2.4 mg/kg.day) or IGF-I by continuous infusion (1.4 mg/kg.day). Each day, weight and feed and water intake were monitored, and on day 7, liver, kidney, spleen, heart, and lung were weighted, and sera were collected. Serum IGF-I was analyzed by immunoassay, and the molecular distribution of the IGFBPs was determined by neutral size-exclusion chromatography combined with Western ligand blot and Western immunoblot. The GHD rats were 40-60% lighter than their normal littermates, and all organs examined were proportionately smaller. Serum IGF-I and IGFBP-3 levels were less than 10% of those in normal rats. Incubation of serum from GHD rats with [125I]IGF-II showed that radiolabel was incorporated only into a 44-kDa IGFBP region that contained the smaller IGFBPs. IGFBP-3 eluted around 60 kDa. No 150-kDa IGFBP region was detected. The administration of GH or IGF-I to GHD rats resulted in significant increases in weight gained, although food and water intake remained unaltered. Weight gain was observed in all three treatments groups. Both GH treatment regimens significantly increased liver, spleen, and lung weight, whereas IGF-I therapy increased spleen, kidney, and heart. Administration of GH twice daily did not increase serum IGF-I or IGFBP-3 concentrations, and the molecular distribution of IGFBP-3 remained unchanged. In contrast, continuous infusion of GH resulted in 5-fold increases in serum IGF-I and increases in IGFBP-3 levels. Size-exclusion chromatography combined with Western ligand blot analysis revealed that radioligand was incorporated into 150- and 60-kDa regions, and that IGFBP-3 was detectable in both regions. Thus, GH infusion was able to induce formation of the 150-kDa ternary complex by increasing circulating levels of IGF-I, IGFBP-3, and presumably ALS. Administration of IGF-I also increased serum IGF-I and IGFBP-3 levels, although the increase in IGFBP-3 was only in the 60-kDa region of the chromatograph, suggesting that IGF-I can induce neither ALS nor formation of the 150-kDa complex.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings

Related Publications

S E Gargosky, and P Tapanainen, and R G Rosenfeld
January 1995, The Journal of clinical endocrinology and metabolism,
S E Gargosky, and P Tapanainen, and R G Rosenfeld
July 1998, The Journal of clinical endocrinology and metabolism,
S E Gargosky, and P Tapanainen, and R G Rosenfeld
December 1991, The Journal of clinical endocrinology and metabolism,
S E Gargosky, and P Tapanainen, and R G Rosenfeld
January 2004, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!