Salt effects on ligand-DNA binding. Minor groove binding antibiotics. 1994

V K Misra, and K A Sharp, and R A Friedman, and B Honig
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.

Salt dependent electrostatic effects play a central role in intermolecular interactions involving nucleic acids. In this paper, the finite-difference solution to the nonlinear Poisson-Boltzmann (NLPB) equation is used to evaluate the salt dependent contribution to the electrostatic binding free energy of the minor groove binding antibiotics DAPI, Hoechst 33258 and netropsin to DNA using detailed molecular structures of the complexes. For each of these systems, a treatment based on the NLPB equation accurately describes the variation of the experimentally observed binding constant with bulk salt concentration. A solvation formalism is developed in which salt effects are described in terms of three free energy contributions: the electrostatic ion-molecule interaction free energy, delta delta G degrees im; the electrostatic ion-ion interaction free energy, delta delta G degrees ii; and the entropic ion organization free energy, delta delta G degrees org. The electrostatic terms, delta delta G degrees im and delta delta G degrees ii, have both enthalpic and entropic components, while the term delta delta G degrees org is purely a cratic entropy. Each of these terms depends significantly on salt dependent changes in the counterion and coion concentrations around the DNA. In each of the systems studied, univalent ions substantially destabilize charged ligand-DNA complexes at physiological salt concentrations. This effect involves a salt dependent redistribution of counterions near the DNA. The free energy associated with the redistribution of counterions upon binding is dominated by the unfavorable change in the electrostatic ion-molecule interactions, delta delta G degrees im, rather than the change in the cratic entropy of ion organization, delta delta G degrees org. In addition, the observed slope of the salt dependence of the free energy is determined by electrostatic ion-molecule and ion-ion interactions as well as the cratic entropy of ion release. These findings are in contrast to models in which the cratic entropy of counterion release drives binding.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009429 Netropsin A basic polypeptide isolated from Streptomyces netropsis. It is cytotoxic and its strong, specific binding to A-T areas of DNA is useful to genetics research. Sinanomycin,Congocidine,IA-887,Netropsin Hydrochloride,T-1384,Hydrochloride, Netropsin
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006690 Bisbenzimidazole A benzimidazole antifilarial agent; it is fluorescent when it binds to certain nucleotides in DNA, thus providing a tool for the study of DNA replication; it also interferes with mitosis. Bisbenzimide,4-(5-(4-Methyl-1-piperazinyl)(2,5'-bi-1H-benzimidazol)-2'-yl)phenol, trihydrochloride,Bisbenzimidazole Trihydrochloride,Hoe-33258,Hoechst 33258,NSC-322921,Pibenzimol,Hoe 33258,Hoe33258,NSC 322921,NSC322921
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

V K Misra, and K A Sharp, and R A Friedman, and B Honig
April 2012, Physical chemistry chemical physics : PCCP,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
October 2007, Mutation research,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
August 2001, Journal of biomolecular structure & dynamics,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
July 2017, Chemphyschem : a European journal of chemical physics and physical chemistry,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
May 2023, The journal of physical chemistry letters,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
January 2010, Cancer genomics & proteomics,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
October 1999, Pharmacology & therapeutics,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
September 2009, Nucleic acids research,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
December 2020, The journal of physical chemistry. B,
V K Misra, and K A Sharp, and R A Friedman, and B Honig
June 2006, Journal of photochemistry and photobiology. B, Biology,
Copied contents to your clipboard!