RNA splicing regulates the activity of a SH2 domain-containing protein tyrosine phosphatase. 1994

L Mei, and C A Doherty, and R L Huganir
Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

A cDNA which encodes a protein tyrosine phosphatase with two src homology 2 (SH2) domains was isolated from a rat brain cDNA library. This phosphatase appears to be a rat homologue of PTP1D based on its amino acid sequence. The gene is expressed in a variety of tissues, and its mRNA is enriched in the brain, skeletal muscle, and lung. An RNA splice variant (PTP1Di) was also isolated which has four additional amino acid residues (Ala-Leu-Leu-Gln) in the catalytic domain. The catalytic domains of PTP1D and PTP1Di were expressed in Escherichia coli as glutathione S-transferase fusion proteins and purified to near homogeneity. Whereas both PTP1D and PTP1Di had catalytic activity, the Vmax of PTP1Di relative to that of PTP1D was 8-fold lower for para-nitrophenylphosphate, 20-fold lower for nicotinic acetylcholine receptor, and 14-fold lower for myelin basic protein. The Km values of PTP1Di were lower than those of PTP1D for both nicotinic acetylcholine receptor and myelin basic protein, suggesting a higher affinity of PTP1Di for a protein substrate. These two forms also differed in optimum pH for para-nitrophenylphosphate and sensitivity to the inhibitory effects of vanadate, molybdate, and spermidine. In order to see if this insert would affect the catalytic activity of other related phosphatases, the 4-amino acids were inserted in the corresponding region of the catalytic domain of PTP1C. Whereas both the wild type and PTP1Ci which contained the 4-amino acid insert dephosphorylated para-nitrophenylphosphate, nicotinic receptor, and myelin basic protein, the enzyme activity of PTP1Ci was only 11-24% of that of PTP1C wild type. These results demonstrate that the 4-amino acid insert in the catalytic domains of PTP1D down-regulates its phosphatase activity and suggests that RNA splicing may serve as a regulatory mechanism of protein tyrosine phosphatase activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

L Mei, and C A Doherty, and R L Huganir
January 2023, Methods in molecular biology (Clifton, N.J.),
L Mei, and C A Doherty, and R L Huganir
May 1998, The international journal of biochemistry & cell biology,
L Mei, and C A Doherty, and R L Huganir
February 2023, Skin health and disease,
L Mei, and C A Doherty, and R L Huganir
March 1993, Science (New York, N.Y.),
L Mei, and C A Doherty, and R L Huganir
February 1993, The Journal of biological chemistry,
L Mei, and C A Doherty, and R L Huganir
March 2024, Journal of medicinal chemistry,
Copied contents to your clipboard!