Retinoic acid enhances adhesiveness, laminin and integrin beta 1 synthesis, and retinoic acid receptor expression in F9 teratocarcinoma cells. 1994

S A Ross, and R A Ahrens, and L M De Luca
Differentiation Control Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

The teratocarcinoma-derived F9 cells respond to retinoic acid (RA) and RA plus dibutyrylcyclic adenosine monophosphate (dcAMP) by differentiating into endoderm cells, which elaborate a laminin and type IV collagen-rich matrix. We found that the induction of differentiation is accompanied by a small but consistent increase in cell adhesiveness to a variety of substrates, including laminin. Therefore we investigated biochemical mechanisms involved in this phenomenon. Endoglycosidase treatment showed that laminin contains complex and hybrid oligosaccharide structures. RA enhanced general biosynthesis of laminin without a specific increase in galactose incorporation: this sugar was mainly in polylactosamine structures in the A chain of laminin and as terminal galactose alpha 1,3 galactose in the B chain. Laminin receptor analysis showed that RA decreased laminin binding protein-37 (LBP-37) but increased the amount of beta 1 integrin, suggesting the involvement of beta 1 integrin in the attachment process. Northern blot analysis showed increased expression of retinoid receptors within hours of RA exposure. These studies demonstrate that RA increases cell to substrate interactions by increasing the biosynthesis of laminin and beta 1 integrin. These effects are most likely subsequent to the RA-induced biosynthesis of the retinoid receptors.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin
D017474 Receptors, Laminin Glycoprotein molecules on the surface of cells that react with or bind to laminin whose function allows the binding of epithelial cells to the basement membrane. The molecular weight of this high-affinity receptor is 67 kD. Laminin Receptors,Laminin Receptor,Receptor, Laminin

Related Publications

S A Ross, and R A Ahrens, and L M De Luca
November 1992, Differentiation; research in biological diversity,
S A Ross, and R A Ahrens, and L M De Luca
August 1991, The EMBO journal,
S A Ross, and R A Ahrens, and L M De Luca
November 1996, FEBS letters,
S A Ross, and R A Ahrens, and L M De Luca
June 2003, Molecular cancer research : MCR,
S A Ross, and R A Ahrens, and L M De Luca
May 2003, Brazilian journal of biology = Revista brasleira de biologia,
S A Ross, and R A Ahrens, and L M De Luca
October 1990, The Journal of biological chemistry,
S A Ross, and R A Ahrens, and L M De Luca
March 1991, The Biochemical journal,
Copied contents to your clipboard!