Role of apical ion channels in sour taste transduction. 1993

S C Kinnamon
Department of Anatomy and Neurobiology, Colorado State University, Ft Collins 80523.

Sour taste perception depends primarily on the concentration of H+ in the taste stimulus. Acid stimuli elicit concentration-dependent action potentials in taste cells. Recent patch-clamp studies suggest that protons depolarize taste cells by direct interaction with apically located ion channels. In Necturus maculosus, the voltage-dependent K+ conductance is restricted to the apical membrane of taste cells. The current flows through a variety of K+ channels with unitary conductances ranging from 30 to 175 pS, all of which are blocked directly by citric acid applied to outside-out or perfused cell-attached patches. In contrast, hamster fungiform taste cells appear to utilize the amiloride-sensitive Na+ channel for acid transduction. Amiloride completely inhibits H+ currents elicited by acid stimuli in isolated taste cells, with an inhibition constant similar to that for amiloride-sensitive Na+ currents (Ki = 0.2 microM). Treatment of isolated taste cells with the bioactive peptide arginine-vasopressin results in similar increases in both the amiloride-sensitive Na+ and H+ currents; the effect is mimicked by 8-bromocyclic AMP. These results suggest that H+ can permeate amiloride-sensitive Na+ channels in hamster fungiform taste cells, contributing to the transduction of sour stimuli.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009337 Necturus A genus of the Proteidae family with five recognized species, which inhabit the Atlantic and Gulf drainages. Mudpuppy,Mudpuppies
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013649 Taste The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS. Gustation,Taste Sense,Gustations,Sense, Taste,Senses, Taste,Taste Senses,Tastes
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D026902 Potassium Channel Blockers A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS. Channel Blockers, Potassium,Potassium Channel Blocker,Blocker, Potassium Channel,Blockers, Potassium Channel,Channel Blocker, Potassium

Related Publications

S C Kinnamon
March 2018, Science (New York, N.Y.),
S C Kinnamon
January 2011, PloS one,
S C Kinnamon
April 2000, The Journal of general physiology,
S C Kinnamon
November 1984, The Journal of physiology,
S C Kinnamon
September 2001, American journal of physiology. Cell physiology,
S C Kinnamon
December 2006, Archives of histology and cytology,
Copied contents to your clipboard!