Effects of kainic acid, quisqualic acid, and their antagonist, pCB-PzDA, on rat electrocorticograms and monoamine metabolite levels in rat striatum. 1994

H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
Department of Neuroscience, Okayama University Medical School, Japan.

The action of kainic acid (KA), quisqualic acid (QA), and 1-(4-chlorobenzoyl)-piperazine-2,3-dicarboxylic acid (pCB-PzDA) was investigated in the central nervous system of male Sprague Dawley rats. Intracerebroventricularly injected KA and QA (100 nmol) induced spike discharges, and pCB-PzDA (100 nmol) suppressed electrocorticograms for one hour. pCB-PzDA enhanced the KA-induced spike discharges and inhibited those induced by QA. 2,3-Di-hydroxyphenylacetic acid(DOPAC) and homovanillic acid (HVA) levels were increased transiently by 10 nmol and continuously by 100 nmol of KA. KA dose-dependently increased 5-hydroxyindoleacetic acid (5-HIAA) levels 2 hours after administration. While 10 nmol of QA slightly increased the HVA level, 100 nmol of QA significantly increased DOPAC, HVA, and 5-HIAA levels. DOPAC and HVA levels were increased by 100 nmol of pCB-PzDA, although this agent inhibited KA-induced increases in DOPAC, HVA, and 5-HIAA levels. On the other hand, while pCB-PzDA first inhibited QA-induced increases in DOPAC, HVA and 5-HIAA levels for one hour, DOPAC and HVA levels thereafter increased additively. These findings suggest that pCB-PzDA may act not only as a NMDA antagonist, but that it may also act directly on dopaminergic neurons.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006719 Homovanillic Acid A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. 3-Methoxy-4-Hydroxyphenylacetic Acid,4-Hydroxy-3-Methoxyphenylacetic Acid,3 Methoxy 4 Hydroxyphenylacetic Acid,4 Hydroxy 3 Methoxyphenylacetic Acid,Acid, 3-Methoxy-4-Hydroxyphenylacetic,Acid, 4-Hydroxy-3-Methoxyphenylacetic,Acid, Homovanillic

Related Publications

H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
April 1985, Journal of neurochemistry,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
January 1984, Journal of neurochemistry,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
December 2004, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
May 1991, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
January 1982, Journal of neuroscience research,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
January 1980, Life sciences,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
August 1989, Neuropharmacology,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
April 1982, Neuroscience letters,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
February 1979, Journal of neurochemistry,
H Kabuto, and I Yokoi, and S MoonSuk, and M Yamamoto, and A Mori
February 1989, Toxicology,
Copied contents to your clipboard!