Neutrophil mediated damage to isolated myocytes after anoxia and reoxygenation. 1994

P R Hansen, and G Stawski
Department of Medicine B, Rigshospitalet, University of Copenhagen, Denmark.

OBJECTIVE The aim was to assess the role of neutrophils in anoxia-reoxygenation induced, neutrophil mediated damage to cardiac myocytes. METHODS Neonatal rat cardiac myocytes in primary monolayer cultures were exposed to a 2 h period of anoxia, and subsequently reoxygenated for 3 h. Neutrophils were added at the time of reoxygenation, and myocyte injury was determined by release of lactate dehydrogenase (LDH). RESULTS Neutrophils produced a dose dependent increase in myocyte LDH release. This effect was not enhanced by coincubation with a neutrophil activator (formyl-Met-Leu-Phe), or interleukin 1 alpha (IL-1 alpha), although IL-1 alpha increased anoxic myocyte damage. Exposure to supernatants from anoxic, or anoxic-reoxygenated, myocytes increased LDH release from normoxic myocytes, and conditioning of these supernatants by neutrophils further increased their cytotoxic potential. The anoxia-reoxygenation induced, neutrophil mediated LDH release was attenuated by some oxygen radical scavengers (superoxide dismutase, histidine, and desferrioxamine), but not others (catalase). Marked decrease in LDH release was also observed after addition of L-arginine, the substrate for synthesis of nitric oxide, along with the neutrophils at the time of reoxygenation. In addition, neutrophil mediated myocyte injury was attenuated by protease inhibitors (Eglin C and alpha 2 macroglobulin), an anti-CD18 monoclonal antibody, and the methylxanthine derivative pentoxifylline, respectively. CONCLUSIONS The results indicate that neutrophils increase myocyte reoxygenation damage, and that reoxygenated cardiac myocytes release potent neutrophil stimulants and cytotoxic mediators. The anoxia-reoxygenation induced, neutrophil mediated myocyte damage is dependent on oxygen free radicals, proteases, and cellular adhesion, and stimulation of endogenous NO production may be protective in this model.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010431 Pentoxifylline A METHYLXANTHINE derivative that inhibits phosphodiesterase and affects blood rheology. It improves blood flow by increasing erythrocyte and leukocyte flexibility. It also inhibits platelet aggregation. Pentoxifylline modulates immunologic activity by stimulating cytokine production. Agapurin,BL-191,Oxpentifylline,Pentoxil,Torental,Trental,BL 191,BL191
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine

Related Publications

P R Hansen, and G Stawski
July 2001, American journal of physiology. Heart and circulatory physiology,
P R Hansen, and G Stawski
November 1990, Journal of molecular and cellular cardiology,
P R Hansen, and G Stawski
January 1994, The American journal of physiology,
P R Hansen, and G Stawski
June 1989, Sheng li xue bao : [Acta physiologica Sinica],
P R Hansen, and G Stawski
September 1990, The American journal of physiology,
P R Hansen, and G Stawski
June 1992, The American journal of physiology,
P R Hansen, and G Stawski
August 1998, The American journal of physiology,
P R Hansen, and G Stawski
November 1991, Journal of molecular and cellular cardiology,
P R Hansen, and G Stawski
September 1994, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!