The 70-kilodalton pertussis toxin-binding protein in Jurkat cells. 1994

G D Armstrong, and C G Clark, and L D Heerze
Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada.

125I-ASD photoaffinity-labeling derivatives of pertussis toxin (125I-ASD-PT) or lipopolysaccharide (125I-ASD-LPS) labeled similar 70-kDa proteins in Jurkat cells, a cell line derived from human CD4+ T lymphocytes. Labeling of this 70-kDa protein by 125I-ASD-PT was inhibited by underivatized PT but not by underivatized LPS. However, an immunoglobulin M monoclonal antibody with specificity for the p73 LPS receptor in murine splenocytes (S. W. Bright, T.-Y. Chen, L. M. Flebbe, M.-G. Lei, and D. C. Morrison, J. Immunol. 145:1-7, 1990) inhibited 125I-ASD-PT labeling of the 70-kDa species in Jurkat cells. Our results suggested that PT may bind to the same 70-kDa protein as LPS does in Jurkat cells but that PT and LPS bind to different sites on this receptor candidate. 125I-ASD-PT photoaffinity labeling of the 70-kDa protein was also inhibited by underivatized glycoproteins to which PT has been shown to bind, and this inhibition correlated with the relative binding affinities of the glycoproteins for PT. 125I-ASD derivatives of two sialic acid-specific plant lectins, Maackia amurensis leukoagglutinin and Sambucus nigra agglutinin, with oligosaccharide binding specificities similar to those of PT also labeled a 70-kDa protein in Jurkat cells. This suggests that the 70-kDa PT receptor candidate in Jurkat cells likely contains sialooligosaccharide sequences to which PT, M. amurensis leukoagglutinin, and S. nigra agglutinin bind. The cross-reacting epitope recognized by monoclonal antibody 5D3 in this 70-kDa species might overlap the PT- and LPS-binding sites.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D018950 Lipopolysaccharide Receptors Glycolipid-anchored membrane glycoproteins expressed on cells of the myelomonocyte lineage including MONOCYTES; MACROPHAGES; and some GRANULOCYTES. They function as receptors for the complex of lipopolysaccharide (LPS) and LPS-binding protein. Antigens, CD14,CD14 Antigens,Receptors, Lipopolysaccharide,Soluble CD14,Soluble CD14 Antigen,Soluble CD14 Protein,sCD14,CD14 Antigen,CD14 Monocyte Differentiation Antigen,LPS Receptor,Lipoglycan Receptor,Receptor, LPS,Receptor, Lipoglycan,CD14 Antigen, Soluble,CD14 Protein, Soluble,CD14, Soluble
D037342 Pertussis Toxin One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity. IAP Pertussis Toxin,Islet-Activating Protein,Pertussigen,Histamine-Sensitizing Factor,Islets-Activating Protein,Lymphocytosis-Promoting Factor,Histamine Sensitizing Factor,Islet Activating Protein,Islets Activating Protein,Lymphocytosis Promoting Factor,Pertussis Toxin, IAP,Toxin, IAP Pertussis,Toxin, Pertussis

Related Publications

G D Armstrong, and C G Clark, and L D Heerze
February 1989, FEBS letters,
G D Armstrong, and C G Clark, and L D Heerze
April 1988, The Journal of biological chemistry,
G D Armstrong, and C G Clark, and L D Heerze
July 1991, Biochimica et biophysica acta,
G D Armstrong, and C G Clark, and L D Heerze
November 1989, Infection and immunity,
G D Armstrong, and C G Clark, and L D Heerze
July 1990, Journal of immunology (Baltimore, Md. : 1950),
G D Armstrong, and C G Clark, and L D Heerze
December 1997, Infection and immunity,
G D Armstrong, and C G Clark, and L D Heerze
March 1992, Plant physiology,
G D Armstrong, and C G Clark, and L D Heerze
June 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
G D Armstrong, and C G Clark, and L D Heerze
March 1991, The American journal of physiology,
G D Armstrong, and C G Clark, and L D Heerze
November 1991, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!