Voltage-dependent potassium channels in activated rat microglia. 1994

W Nörenberg, and P J Gebicke-Haerter, and P Illes
Department of Pharmacology, University of Freiburg, FRG.

1. Voltage-dependent currents of untreated (proliferating) and lipopolysaccharide (LPS)-treated rat microglial cells in culture were recorded using the whole-cell patch-clamp technique. 2. Membrane potentials showed prominent peaks at -35 mV and -70 mV. Membrane potentials of LPS-treated cells alternated between the two values. This may be due to a negative slope region of the I-V relation resulting in two zero current potentials. 3. From a holding potential of -70 mV, hyperpolarizing steps evoked an inwardly rectifying current both in proliferating and in LPS-treated cells, while depolarizing steps below -50 mV evoked an outwardly rectifying current only in LPS-treated microglia. The currents were K+ selective, as indicated by their reversal potential of approximately 0 mV in symmetric K+ concentrations (150 mM both intra- and extracellularly) and the reversal potential of the outward tail currents of approximately -90 mV at a normal extracellular K+ concentration (4.5 mM). 4. The activation of the outward current could be fitted by Hodgkin-Huxley-type n4 kinetics. The time constant of activation depended on voltage. 5. The inactivation of the inward and outward currents could be fitted by a single exponential. The time constant of the inward current inactivation was dependent on voltage, whereas the time constant of the outward current inactivation was virtually independent of voltage, except near the threshold of activation. Recovery of the outward from inactivation was slow and could be fitted by two exponentials. Responses to depolarizing steps were stable at 0.125 Hz, but greatly decreased from the first to the second pulse at 1 Hz. 6. The inactivation of the inward, but not of the outward, current disappeared in a low Na(+)-containing medium (5 mM). The inward current was selectively inhibited by extracellular Cs+ and Ba2+. The outward current was selectively inhibited by Cd2+, 4-aminopyridine and charybdotoxin. Replacement of intracellular K+ by an equimolar concentration of Cs+, and the extracellular application of tetraethylammonium and quinine inhibited both currents. 7. An increase of extracellular Ca2+ from 2 to 20 mM resulted in outwardly rectifying K+ channels activating at more positive potentials. Omission of Ca2+ from the extracellular medium had the opposite effect. When the intracellular free Ca2+ was increased from 0.01 to 1 microM, the outward current amplitudes were depressed. The Ca2+ ionophore A23187 had a similar effect. 8. LPS-treated microglial cells possess inwardly and outwardly rectifying K+ channels. The physiological and pharmacological characteristics of these two channel populations are markedly different.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009761 Nystatin Macrolide antifungal antibiotic complex produced by Streptomyces noursei, S. aureus, and other Streptomyces species. The biologically active components of the complex are nystatin A1, A2, and A3. Fungicidin,Mycostatin,Nilstat,Nystatin A1,Nystatin A2,Nystatin A3,Nystatin G,Stamicin,Stamycin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

W Nörenberg, and P J Gebicke-Haerter, and P Illes
October 2012, Journal of endodontics,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
January 1993, The Journal of physiology,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
August 1986, Journal of neurophysiology,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
January 2021, Frontiers in physiology,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
May 1989, Brain research,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
January 2001, Progress in biophysics and molecular biology,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
January 2013, Progress in molecular biology and translational science,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
June 1996, Biochemical and biophysical research communications,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
January 1994, Renal physiology and biochemistry,
W Nörenberg, and P J Gebicke-Haerter, and P Illes
January 2012, Frontiers in pharmacology,
Copied contents to your clipboard!