Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine- and biotin-conjugated dextran amine. 1994

M J Dolleman-Van der Weel, and F G Wouterlood, and M P Witter
Graduate School Neurosciences Amsterdam, Faculty of Medicine, Department of Anatomy and Embryology, Vrije Universiteit, Netherlands.

The simultaneous use of different neuroanatomical anterograde tracers provides a potentially powerful method to study the convergence of afferent systems in a particular brain area. However, a simple routine procedure to apply multiple anterograde tracers in conjunction with their simultaneous visualization is still missing. We report an easy and straightforward application of three sensitive anterograde tracers: Phaseolus vulgaris leucoagglutinin (PHA-L), rhodamine-conjugated dextran amine (RDA) and biotin-conjugated dextran amine (BDA). These tracers can be visualized simultaneously and permanently through a triple-staining procedure with nickel-enhanced diaminobenzidine (DAB-Ni), DAB and 1-naphthol/Azur B as chromogens. Our test model comprised the projections from the nucleus reuniens thalami and entorhinal cortex. Both projection systems show a high degree of overlap in their terminal fields in the hippocampus. Two tracers were injected in the left and right entorhinal cortex, respectively; a third tracer was injected in the nucleus reuniens. This combination of injections provided a good opportunity to compare the three tracers in one and the same animal. PHA-L, RDA and BDA, injected in either of the injection sites, turned out to be equally sensitive and revealed the morphology of the involved projection systems in great detail. The triple-staining protocol yielded an excellent, simultaneous detectability of the three tracers with a remarkably low background level. Thus, the combination of the anterograde tracers PHA-L, RDA and BDA, in conjunction with the triple-staining procedure, offers a very attractive approach for neuroanatomical research.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500

Related Publications

M J Dolleman-Van der Weel, and F G Wouterlood, and M P Witter
September 1991, The Journal of comparative neurology,
M J Dolleman-Van der Weel, and F G Wouterlood, and M P Witter
August 1990, The Journal of comparative neurology,
M J Dolleman-Van der Weel, and F G Wouterlood, and M P Witter
August 1987, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
M J Dolleman-Van der Weel, and F G Wouterlood, and M P Witter
April 1988, The Journal of comparative neurology,
M J Dolleman-Van der Weel, and F G Wouterlood, and M P Witter
February 1992, Journal of neuroscience methods,
Copied contents to your clipboard!