Alkyltransferase transgenic mice: probes of chemical carcinogenesis. 1994

S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4937.

Transgenic mice expressing DNA-repair genes are an instructive model with which to study the protective role of DNA-repair pathways in both spontaneous and chemical carcinogenesis. Of particular interest in chemical carcinogenesis is the DNA-repair protein O6-alkylguanine-DNA alkyltransferase (alkyltransferase) which repairs O6-alkylguanine-DNA adducts. Transgenic mice carrying expression constructs for the alkyltransferase gene--either the human MGMT cDNA or the bacterial ada gene--express increased levels of alkyltransferase and have increased capacity to remove O6-methylguanine-DNA adducts. Protection from the DNA damaging effects of N-nitroso compounds occurs specifically in the cells and tissues in which the alkyltransferase transgene is expressed. For instance, mice carrying the PEPCKada construct have increased alkyltransferase in the liver and more rapid removal of O6methylguanine-DNA adducts. The protective effect is noted in hepatocytes, which express PEPCK-linked genes, not in nonparenchymal cells of the liver, which do not. Other tissues that express the transgene in the various models include the thymus, spleen, testes, muscle, stomach and brain. Mice expressing the human alkyltransferase in the thymus have a reduced incidence of thymic lymphomas following exposure to methyl nitrosourea (MNU), evidence of a role for this DNA-repair protein in protection from carcinogenesis due to N-nitroso compounds. Protection has also been observed in the induction of hepatic tumors by N-nitroso-dimethylamine (NDMA). These models will be used to identify whether overexpression of a single DNA-repair gene can block the carcinogenic process of N-nitroso compounds in many different tissues.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008297 Male Males
D008770 Methylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosomethylurea,N-Methyl-N-nitrosourea,NSC-23909,N Methyl N nitrosourea,NSC 23909,NSC23909
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009603 Nitroso Compounds Organic compounds containing the nitroso (-N Compounds, Nitroso
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent

Related Publications

S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
April 1990, The Kobe journal of medical sciences,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
April 2001, Chembiochem : a European journal of chemical biology,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
January 1991, Experimental lung research,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
January 1994, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
July 1998, Oncogene,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
July 1995, Proceedings of the Association of American Physicians,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
February 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
December 1989, Science (New York, N.Y.),
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
June 1995, Cancer metastasis reviews,
S L Gerson, and N H Zaidi, and L L Dumenco, and E Allay, and C Y Fan, and L Liu, and P J O'Connor
December 1999, Urology,
Copied contents to your clipboard!