N-methyl-D-aspartate receptor antagonist ketamine selectively attenuates spontaneous phasic activity of supraoptic vasopressin neurons in vivo. 1994

R Nissen, and B Hu, and L P Renaud
Neuroscience Unit, Loeb Research Institute, Ottawa Civic Hospital, Ontario, Canada.

Supraoptic neurosecretory neurons express a prominent N-methyl-D-aspartate receptor system. Recent in vitro evidence reveals that N-methyl-D-aspartate receptor activation dramatically alters the spontaneous discharge patterns of supraoptic neurons. In this study we evaluate whether N-methyl-D-aspartate receptors in vivo contribute to the development of characteristic phasic discharge patterns displayed by vasopressin-secreting neurons. Intravenous administration of ketamine hydrochloride, a non-competitive N-methyl-D-aspartate receptor antagonist, was used to examine whether N-methyl-D-aspartate receptor blockade influences patterned spontaneous discharge observed in supraoptic neurosecretory neurons. Extracellular recordings were obtained from identified hypothalamic supraoptic neurons in pentobarbital-anaesthetized Long-Evans rats. Systemic administration of ketamine (< or = 1.5 mg/kg) potently suppressed spontaneous phasic discharge in 16/19 putative vasopressin-secreting cells. The ketamine-induced blockade was dose dependent, fully reversible and was associated with the complete blockade of activity evoked by local pressure application of N-methyl-D-aspartate, but not the activity evoked by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor agonists (6/6 cells). Ketamine had no detectable effect on threshold or shape of antidromic action potentials. By comparison, the activity in 9/10 continuously active neurons (putative oxytocin-secreting) was unaffected by administration of identical doses of ketamine. These data suggest that N-methyl-D-aspartate receptors play an important role in regulating the onset and maintenance of spontaneous phasic activity patterns displayed by rat supraoptic vasopressin neurons in vivo.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

R Nissen, and B Hu, and L P Renaud
March 2014, Journal of cognitive neuroscience,
R Nissen, and B Hu, and L P Renaud
September 2017, Organic letters,
R Nissen, and B Hu, and L P Renaud
January 2003, Neuro-Signals,
R Nissen, and B Hu, and L P Renaud
November 2002, Neuroreport,
R Nissen, and B Hu, and L P Renaud
August 1987, The Journal of pharmacology and experimental therapeutics,
R Nissen, and B Hu, and L P Renaud
April 1992, Behavioral neuroscience,
Copied contents to your clipboard!