Classical and channel-like urate transporters in rabbit renal brush border membranes. 1994

B A Knorr, and J C Beck, and R G Abramson
Department of Medicine, Mount Sinai School of Medicine, New York, New York.

The precise mechanism by which urate is transported across rabbit renal proximal tubule luminal membranes has not been defined. To determine whether urate flux across this membrane represents simple diffusion or transport on specific carriers, urate uptake was examined in brush border membrane vesicles that were prepared by a Mg+(+)-aggregation technique and then exposed to CuCl2. Na(+)-independent, voltage sensitive urate transport was demonstrated in these Cu+(+)-exposed vesicles. Transport was trans-stimulated by urate and cis inhibited by pyrazinoic acid and oxonate. A small fraction of transported urate and urate in the extravesicular fluid was oxidized to allantoin. Kinetic analysis revealed the presence of two kinetically distinct transporters; a channel-like carrier that was inhibited by pyrazinoic acid and oxonate, and a high-affinity, classical, saturable carrier that was inhibited by higher concentrations of oxonate. These studies provide the first direct evidence for carrier-mediated urate transport in rabbit renal brush-border membranes and demonstrate that the rabbit transporter(s) share a number of properties with the urate uniporter in rat proximal tubule cell membranes.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010094 Oxonic Acid Antagonist of urate oxidase. Oteracil
D011718 Pyrazinamide A pyrazine that is used therapeutically as an antitubercular agent. Tisamid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63

Related Publications

B A Knorr, and J C Beck, and R G Abramson
May 1990, The American journal of physiology,
B A Knorr, and J C Beck, and R G Abramson
January 1991, Life sciences,
B A Knorr, and J C Beck, and R G Abramson
March 1985, The Journal of physiology,
B A Knorr, and J C Beck, and R G Abramson
March 1989, The Journal of biological chemistry,
B A Knorr, and J C Beck, and R G Abramson
August 1984, Biochimica et biophysica acta,
B A Knorr, and J C Beck, and R G Abramson
September 1985, The American journal of physiology,
B A Knorr, and J C Beck, and R G Abramson
March 1982, Biochimica et biophysica acta,
B A Knorr, and J C Beck, and R G Abramson
July 1988, Biochimica et biophysica acta,
B A Knorr, and J C Beck, and R G Abramson
June 1989, Biochimica et biophysica acta,
B A Knorr, and J C Beck, and R G Abramson
April 1981, Biochimica et biophysica acta,
Copied contents to your clipboard!