Selective loss of [3H]kainic acid and [3H]AMPA binding in layer VI of frontal cortex in Huntington's disease. 1994

M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Excitatory amino acid neurotoxicity has been proposed to cause the neostriatal neuronal degeneration of Huntington's disease (HD); N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate receptors have been hypothesized to play important roles in this process. We have recently reported a loss of neurons in layer VI of the cerebral cortex in HD. Using quantitative autoradiographic methods, we have now measured NMDA, AMPA, and kainate receptor binding in the frontal cerebral cortex of the brains of controls and individuals with HD. We find no change in NMDA receptor binding but a selective decrease in kainate and AMPA receptor binding in layer VI. These data suggest that cerebral cortical neurons possessing kainate or AMPA receptors may be selectively vulnerable in individuals with HD.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006816 Huntington Disease A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4) Huntington Chorea,Juvenile Huntington Disease,Akinetic-Rigid Variant of Huntington Disease,Chorea, Chronic Progressive Hereditary (Huntington),Chronic Progressive Hereditary Chorea (Huntington),Huntington Chronic Progressive Hereditary Chorea,Huntington Disease, Akinetic-Rigid Variant,Huntington Disease, Juvenile,Huntington Disease, Juvenile-Onset,Huntington Disease, Late Onset,Huntington's Chorea,Huntington's Disease,Juvenile-Onset Huntington Disease,Late-Onset Huntington Disease,Progressive Chorea, Chronic Hereditary (Huntington),Progressive Chorea, Hereditary, Chronic (Huntington),Akinetic Rigid Variant of Huntington Disease,Chorea, Huntington,Chorea, Huntington's,Huntington Disease, Akinetic Rigid Variant,Huntington Disease, Juvenile Onset,Huntington Disease, Late-Onset,Juvenile Onset Huntington Disease,Late Onset Huntington Disease
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
October 1983, Neuroscience letters,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
December 1991, Annals of neurology,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
February 1979, Life sciences,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
October 1979, Neuroscience letters,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
January 1992, British journal of pharmacology,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
April 1977, Journal of neurochemistry,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
December 1991, Neuroscience letters,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
February 1985, Brain research,
M V Wagster, and J C Hedreen, and C E Peyser, and S E Folstein, and C A Ross
April 1979, Life sciences,
Copied contents to your clipboard!