Distribution of secretoneurin immunoreactivity in the spinal cord and lower brainstem in comparison with that of substance P and calcitonin gene-related peptide. 1994

J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
Neurochemical Unit, Clinic of Psychiatry, Innsbruck, Austria.

Secretoneurin is a peptide of 33 amino acids generated in brain by proteolytic processing of secretogranin II. The distribution of this newly characterized peptide was investigated by means of immunocytochemistry and in situ hybridization in the spinal cord and lower brainstem of the rat. The staining pattern of secretoneurin immunoreactivity (IR) was compared to that of substance P (SP) and calcitonin gene-related peptide (CGRP) in adjacent sections. A high density of secretoneurin-IR fibers and terminals was found in lamina I and outer lamina II of the caudal trigeminal nucleus and of the spinal cord at all levels, around the central canal, and in the sympathetic and parasympathetic areas of the lateral cell columns. The ventral horn displayed a low to moderate density of secretoneurin-IR. The highest number of secretogranin II mRNA-containing cells was found in lamina II of the dorsal horn and in neurons of the dorsal root ganglia. In the white matter, secretoneurin-IR was most prominent in the dorsolateral part of the lateral funiculus and in the tract of Lissauer. The distributions of secretoneurin-IR and SP-IR were strikingly similar. CGRP-IR and secretoneurin-IR overlapped in the outer laminae of the dorsal horn, in the lateral cell column, and probably in some motoneurons. This study establishes that, like SP and CGRP, secretoneurin is a peptide highly concentrated in the terminal field of primary afferents and in sympathetic and parasympathetic areas. Thus secretoneurin might be involved in the modulation of afferent transmission.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
May 1995, Neuroscience letters,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
May 1994, The Journal of rheumatology,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
October 1987, Neuroscience letters,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
October 1994, Journal of chemical neuroanatomy,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
June 1994, Regulatory peptides,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
October 2007, Spinal cord,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
December 1993, Neuroscience,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
October 1990, Journal of the neurological sciences,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
July 1990, Pain,
J Marksteiner, and S K Mahata, and R Pycha, and M Mahata, and A Saria, and R Fischer-Colbrie, and H Winkler
July 1988, Cell and tissue research,
Copied contents to your clipboard!