Cyclothiazide selectively potentiates AMPA- and kainate-induced [3H]norepinephrine release from rat hippocampal slices. 1994

M A Desai, and J P Burnett, and D D Schoepp
Eli Lilly and Company, Indianapolis, IN 46285.

Activation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of ionotropic glutamate receptors has been shown to result in a rapid desensitization of the receptor in the presence of certain agonists. One effect of AMPA receptor desensitization in the hippocampus may be to decrease the efficacy of AMPA receptor agonists at stimulating the release of norepinephrine from noradrenergic terminals. Recently, cyclothiazide was reported to inhibit AMPA receptor desensitization by acting at a distinct site on AMPA receptors. We have examined the effect of cyclothiazide on AMPA- and kainate (KA)-induced norepinephrine release from rat hippocampal slices to determine whether cyclothiazide would increase the efficacy of AMPA-induced [3H]norepinephrine release by inhibiting AMPA receptor desensitization. Cyclothiazide was observed to potentiate markedly both AMPA- and KA-induced [3H]-norepinephrine release. This potentiation is selective for AMPA/KA receptors as cyclothiazide did not potentiate N-methyl-D-aspartate-induced [3H]norepinephrine release or release induced by the nonspecific depolarizing agents veratridine and 4-aminopyridine. These results demonstrate that AMPA receptor-mediated modulation of [3H]norepinephrine release from rat brain slices is a useful approach to studying the cyclothiazide modulatory site on the AMPA receptor complex.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000959 Antihypertensive Agents Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS. Anti-Hypertensive,Anti-Hypertensive Agent,Anti-Hypertensive Drug,Antihypertensive,Antihypertensive Agent,Antihypertensive Drug,Anti-Hypertensive Agents,Anti-Hypertensive Drugs,Anti-Hypertensives,Antihypertensive Drugs,Antihypertensives,Agent, Anti-Hypertensive,Agent, Antihypertensive,Agents, Anti-Hypertensive,Agents, Antihypertensive,Anti Hypertensive,Anti Hypertensive Agent,Anti Hypertensive Agents,Anti Hypertensive Drug,Anti Hypertensive Drugs,Anti Hypertensives,Drug, Anti-Hypertensive,Drug, Antihypertensive,Drugs, Anti-Hypertensive,Drugs, Antihypertensive
D001581 Benzothiadiazines Heterocyclic compounds of a ring with SULFUR and two NITROGEN atoms fused to a BENZENE ring. Members inhibit SODIUM-POTASSIUM-CHLORIDE SYMPORTERS and are used as DIURETICS.
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D014701 Veratridine A benzoate-cevane found in VERATRUM and Schoenocaulon. It activates SODIUM CHANNELS to stay open longer than normal.

Related Publications

M A Desai, and J P Burnett, and D D Schoepp
June 1990, Journal of neurochemistry,
M A Desai, and J P Burnett, and D D Schoepp
October 1994, British journal of pharmacology,
M A Desai, and J P Burnett, and D D Schoepp
August 1991, European journal of pharmacology,
M A Desai, and J P Burnett, and D D Schoepp
January 1997, Proceedings of the Western Pharmacology Society,
M A Desai, and J P Burnett, and D D Schoepp
September 2001, Neurochemical research,
M A Desai, and J P Burnett, and D D Schoepp
February 1987, The Journal of pharmacology and experimental therapeutics,
M A Desai, and J P Burnett, and D D Schoepp
January 1994, European journal of pharmacology,
M A Desai, and J P Burnett, and D D Schoepp
October 1970, Nature,
Copied contents to your clipboard!