Structural and functional characterization of elastases from horse neutrophils. 1994

A Dubin, and J Potempa, and J Travis
Department of Animal Biochemistry, Jagiellonian University, Kraków, Poland.

In order better to understand the pathophysiology of the equine form of emphysema, two elastinolytic enzymes from horse neutrophils, referred to as proteinases 2A and 2B, have been extensively characterized and compared with the human neutrophil proteinases, proteinase-3 and elastase. Specificity studies using both the oxidized insulin B-chain and synthetic peptides revealed that cleavage of peptide bonds with P1 alanine or valine residues was preferred. Further characterization of the two horse elastases by N-terminal sequence and reactive-site analyses indicated that proteinases 2A and 2B have considerable sequence similarity to each other, to proteinase-3 from human neutrophils (proteinase 2A), to human neutrophil elastase (proteinase 2B) and to a lesser extent to pig pancreatic elastase. Horse and human elastases differed somewhat in their interaction with some natural protein proteinase inhibitors. For example, in contrast with its action on human neutrophil elastase, aprotinin did not inhibit either of the horse proteinases. However, the Val15, alpha-aminobutyric acid-15 (Abu15), alpha-aminovaleric acid-15 (Nva15) and Ala15 reactive-site variants of aprotinin were good inhibitors of proteinase 2B (Ki < 10(-9) M) but only weak inhibitors of proteinase 2A (Ki > 10(-7) M). In summary, despite these differences, the horse neutrophil elastases were found to resemble closely their human counterparts, thus implicating them in the pathological degradation of connective tissue in chronic lung diseases in the equine species.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007611 Aprotinin A single-chain polypeptide derived from bovine tissues consisting of 58 amino-acid residues. It is an inhibitor of proteolytic enzymes including CHYMOTRYPSIN; KALLIKREIN; PLASMIN; and TRYPSIN. It is used in the treatment of HEMORRHAGE associated with raised plasma concentrations of plasmin. It is also used to reduce blood loss and transfusion requirements in patients at high risk of major blood loss during and following open heart surgery with EXTRACORPOREAL CIRCULATION. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1995) BPTI, Basic Pancreatic Trypsin Inhibitor,Basic Pancreatic Trypsin Inhibitor,Bovine Kunitz Pancreatic Trypsin Inhibitor,Kallikrein-Trypsin Inactivator,Kunitz Pancreatic Trypsin Inhibitor,Trypsin Inhibitor, Basic, Pancreatic,Trypsin Inhibitor, Kunitz, Pancreatic,Antilysin,Bovine Pancreatic Trypsin Inhibitor,Contrical,Contrykal,Dilmintal,Iniprol,Kontrikal,Kontrykal,Pulmin,Traskolan,Trasylol,Zymofren,Inactivator, Kallikrein-Trypsin,Kallikrein Trypsin Inactivator
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Dubin, and J Potempa, and J Travis
March 2001, Antimicrobial agents and chemotherapy,
A Dubin, and J Potempa, and J Travis
June 1976, Biochemistry,
A Dubin, and J Potempa, and J Travis
November 1960, Archivio per le scienze mediche,
A Dubin, and J Potempa, and J Travis
April 2020, Molecules (Basel, Switzerland),
A Dubin, and J Potempa, and J Travis
February 1991, Chemical & pharmaceutical bulletin,
A Dubin, and J Potempa, and J Travis
December 1998, Journal of bacteriology,
A Dubin, and J Potempa, and J Travis
February 2013, Journal of molecular cell biology,
A Dubin, and J Potempa, and J Travis
April 2024, Acta crystallographica. Section F, Structural biology communications,
A Dubin, and J Potempa, and J Travis
December 1985, American journal of veterinary research,
Copied contents to your clipboard!