Experimental basis for separation of membrane vesicles by preparative free-flow electrophoresis. 1994

D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907.

In practice it has been possible to separate membrane particles of different origins but of similar chemical composition by preparative free-flow electrophoresis. Examples include the vacuolar (tonoplast) and plasma membranes of plants and membranes derived from the cis and trans regions of the rat liver Golgi apparatus. Yet, when analyzed for intrinsic molecules that might contribute to significant differences in surface charge, the separated membranes were surprisingly similar. As more information was generated, it became apparent that the membranes with greatest electrophoretic mobility (i.e. lysosomes, rightside-out tonoplast vesicles and membranes from the trans region of the Golgi apparatus), where those membranes with an inherent ability to acidify their interiors. By so doing, the vesicles generate a membrane potential, negative outside, which might serve as a basis for enhanced electrophoretic mobility. To test the hypothesis, tonoplast membranes were incubated with ATP to drive proton import or with monensin to dissipate the ATP-supported proton gradient. With ATP, mobility was enhanced. Also, when ATP-treated vesicles were analyzed in the presence of monensin, the ATP effect on mobility was reversed. Similarly with Golgi apparatus, mobility of the most electrophoretically mobile portions of the separation was enhanced by ATP and the ATP effect was reversed with monensin. A trans origin of the vesicles was verified by assay of the trans Golgi apparatus marker, thiamine pyrophosphatase. Finally, incubation with ATP (and reversal by monensin) was employed as an aid to the free-flow electrophoretic separation of kidney endosomes from complex mixtures. These lysosomal derivatives also are capable of acidification of their interiors in an ATP-dependent process and of generating, at the same time, a negative (outside) membrane potential. The findings provide both an experimental basis to enhance membrane separations by preparative free-flow electrophoresis and, at the same time, a theoretical basis to help explain why certain membranes of very similar overall chemical composition may be separated by electrophoretic methods.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi

Related Publications

D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
February 1988, Plant physiology,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
December 1977, Biochimica et biophysica acta,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
January 1974, European journal of biochemistry,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
May 1988, Analytical biochemistry,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
January 2015, Journal of separation science,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
November 1990, Plant physiology,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
January 1980, Folia biologica,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
February 1989, Analytical biochemistry,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
January 1992, Electrophoresis,
D J Morré, and J Lawrence, and K Safranski, and T Hammond, and D M Morré
January 2015, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!