Molecular analysis of the gamma heavy chain of Chlamydomonas flagellar outer-arm dynein. 1994

C G Wilkerson, and S M King, and G B Witman
Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

We report here the complete sequence of the gamma dynein heavy chain of the outer arm of the Chlamydomonas flagellum, and partial sequences for six other dynein heavy chains. The gamma dynein heavy chain sequence contains four P-loop motifs, one of which is the likely hydrolytic site based on its position relative to a previously mapped epitope. Comparison with available cytoplasmic and flagellar dynein heavy chain sequences reveals regions that are highly conserved in all dynein heavy chains sequenced to date, regions that are conserved only among axonemal dynein heavy chains, and regions that are unique to individual dynein heavy chains. The presumed hydrolytic site is absolutely conserved among dyneins, two other P loops are highly conserved among cytoplasmic dynein heavy chains but not in axonemal dynein heavy chains, and the fourth P loop is invariant in axonemal dynein heavy chains but not in cytoplasmic dynein. One region that is very highly conserved in all dynein heavy chains is similar to a portion of the ATP-sensitive microtubule-binding domain of kinesin. Two other regions present in all dynein heavy chains are predicted to have high alpha-helical content and have a high probability of forming coiled-coil structures. Overall, the central one-third of the gamma dynein heavy chain is most conserved whereas the N-terminal one-third is least conserved; the fact that the latter region is divergent between the cytoplasmic dynein heavy chain and two different axonemal dynein heavy chains suggests that it is involved in chain-specific functions.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002696 Chlamydomonas A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil. Chlamydomona
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C G Wilkerson, and S M King, and G B Witman
November 1988, The Journal of cell biology,
C G Wilkerson, and S M King, and G B Witman
July 2002, Cell motility and the cytoskeleton,
C G Wilkerson, and S M King, and G B Witman
May 1991, The Journal of cell biology,
C G Wilkerson, and S M King, and G B Witman
August 1993, The Journal of cell biology,
C G Wilkerson, and S M King, and G B Witman
February 1994, The Journal of biological chemistry,
C G Wilkerson, and S M King, and G B Witman
August 1999, The Journal of cell biology,
C G Wilkerson, and S M King, and G B Witman
March 1999, Molecular biology of the cell,
C G Wilkerson, and S M King, and G B Witman
March 1985, Journal of cell science,
Copied contents to your clipboard!