Properties of the ryanodine receptor present in the sarcoplasmic reticulum from lobster skeletal muscle. 1993

E Olivares, and N Arispe, and E Rojas
Laboratory of Cell Biology and Genetics, National Institute for Diabetes, Digestive Diseases and Kidney, National Institutes of Health, Bethesda, MD 20892.

Microsomal sarcoplasmic reticulum (SR) fractions from lobster skeletal muscle were found to bind [3H]-ryanodine. [3H]-ryanodine binding was enhanced by AMP, Ca2+ and caffeine, and significantly diminished by ATP, Ba2+ and Sr2+. Furthermore, dantrolene and ruthenium red, two classical inhibitors of Ca2+ release from the SR, blocked [3H]-ryanodine binding. Similarly, tetracaine, known to block the charge movement associated with excitation-contraction coupling in vertebrate muscle, inhibited the binding of the alkaloid. Our lobster SR preparation exhibited a single high-affinity ryanodine binding site (Kd = 6.6 nM, Bmax = 10 pmol/mg protein). Since SDS-PAGE of the SR proteins revealed a major band c. 565 kDa which comigrated with the putative ryanodine receptor from both rat and chicken skeletal muscle, we concluded that lobster skeletal muscle is equipped with the 565 kDa ryanodine receptor. Finally, incorporation of the SR microsomal fraction from lobster into planar bilayer membranes revealed the presence of a ryanodine-sensitive Ca2+ channel activity (160 pS in symmetrical 200 mM CsCl solutions). We concluded that both the crustacean and vertebrate skeletal muscle ryanodine receptor share the relevant properties such as molecular weight and affinity for ryanodine and inositol 1,4,5 triphosphate. However, there are important differences between the two receptors including differential effects of the alkaloid on the Ca2+ release channel and modulation of the receptor by nucleotides.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003620 Dantrolene Skeletal muscle relaxant that acts by interfering with excitation-contraction coupling in the muscle fiber. It is used in spasticity and other neuromuscular abnormalities. Although the mechanism of action is probably not central, dantrolene is usually grouped with the central muscle relaxants. Dantrium,Dantrolene Sodium,Sodium, Dantrolene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012430 Ruthenium Red An inorganic dye used in microscopy for differential staining and as a diagnostic reagent. In research this compound is used to study changes in cytoplasmic concentrations of calcium. Ruthenium red inhibits calcium transport through membrane channels. Ammoniated Ruthenium Oxychloride,Oxychloride, Ammoniated Ruthenium,Red, Ruthenium,Ruthenium Oxychloride, Ammoniated
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.

Related Publications

E Olivares, and N Arispe, and E Rojas
February 1993, Biochimica et biophysica acta,
E Olivares, and N Arispe, and E Rojas
December 1995, The Journal of biological chemistry,
E Olivares, and N Arispe, and E Rojas
September 2001, Biochemical and biophysical research communications,
E Olivares, and N Arispe, and E Rojas
July 1988, The Journal of general physiology,
E Olivares, and N Arispe, and E Rojas
May 1996, FEBS letters,
E Olivares, and N Arispe, and E Rojas
January 1999, Acta physiologica Hungarica,
E Olivares, and N Arispe, and E Rojas
July 1987, The Journal of pharmacology and experimental therapeutics,
E Olivares, and N Arispe, and E Rojas
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!