Modulation of ion channels by protein phosphorylation and dephosphorylation. 1994

I B Levitan
Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254.

Modulation of the properties of membrane ion channels is of fundamental importance for the regulation of neuronal electrical activity and of higher neural functions. Among the many potential molecular mechanisms for modulating the activity of membrane proteins such as ion channels, protein phosphorylation has been chosen by cells to play a particularly prominent part. This is not surprising given the central role of protein phosphorylation in a wide variety of cellular, metabolic, and signaling processes (26, 27, 48). As summarized here, regulation by phosphorylation is not restricted to one or another class of ion channel; rather, many, and perhaps all, ion channels are subject to modulation by phosphorylation. Similarly, a number of different protein kinase signaling pathways can participate in the regulation of ion channel properties, and it is not unusual to find that a particular channel is modulated by several different protein kinases, each influencing channel activity in a unique way. Finally, the biophysical mechanisms of modulation also exhibit a striking diversity that ranges from changes in desensitization rates to shifts in the voltage dependence and kinetics of channel activation and inactivation. The convergence of channel molecular biology with patch-clamp technology has been spectacularly productive, even allowing the identification of particular amino acid residues in ion channel proteins that participate in specific modulatory changes in channel biophysical properties. This task is far from complete, and no doubt there remain surprises in store for us, but nevertheless it is appropriate to ask where we go from here. One important direction will be to relate functional modulation, produced by phosphorylation, to changes in the three-dimensional structure of the ion channel protein. Unfortunately, structural studies of membrane proteins are extremely difficult, and to date there is no high resolution structure available for any ion channel protein. A complementary strategy that is more feasible with current technology is to investigate the ways in which channel modulation contributes to the regulation of cellular physiology. Novel computational approaches are being brought to bear on this complex issue, and their combination with channel molecular biology and biophysics should significantly advance our understanding of molecular mechanisms of neuronal plasticity.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

I B Levitan
January 1999, Advances in second messenger and phosphoprotein research,
I B Levitan
January 1996, International review of neurobiology,
I B Levitan
November 2001, American journal of physiology. Heart and circulatory physiology,
I B Levitan
December 1993, Annals of the New York Academy of Sciences,
I B Levitan
January 1999, Advances in second messenger and phosphoprotein research,
I B Levitan
April 1990, Current opinion in cell biology,
I B Levitan
April 1989, Current opinion in cell biology,
I B Levitan
January 1999, Methods in enzymology,
Copied contents to your clipboard!