Galanin and vasoactive intestinal peptide messenger RNAs increase following axotomy of adult sympathetic neurons. 1994

R P Mohney, and R E Siegel, and R E Zigmond
Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.

The adult rat superior cervical ganglion (SCG) contains low levels of galanin- and vasoactive intestinal peptide-(VIP) like immunoreactivity, with very few immunostained principal neurons. Immunoreactivity for both neuropeptides increases in these neurons after explantation or postganglionic axotomy in vivo. Northern blot analysis has demonstrated concomitant increases in mRNAs encoding these peptides. To localize cells in axotomized ganglia which increase their expression of these mRNAs, we performed in situ hybridization studies. In control SCG, only a few principal neurons contained mRNA for either galanin or VIP. After 48 h in organ culture, galanin mRNA was expressed in the majority of principal neurons. At 48 h after in vivo axotomy of both postganglionic trunks of the SCG, the internal and external carotid nerves, the distribution and number of neurons, expressing galanin mRNA increased similarly to that seen in culture. Lesioning either trunk alone produced increases in galanin mRNA localized to those regions of the ganglion containing neurons that project into the lesioned trunk. Transection of the predominantly preganglionic cervical sympathetic trunk increased galanin mRNA expression in a small population of neurons near that nerve trunk. The distributions of these labeled neurons, together with previous neuroanatomical studies, suggests that they had been axotomized by the lesions. Similar studies examining VIP mRNA expression demonstrated that although considerably fewer VIP mRNA expressing neurons than galanin mRNA expressing neurons were present after axotomy, the distribution of neuropeptide mRNA-positive cells were similar in both cases. These observations suggest that increases in the peptides galanin and VIP after nerve transection result from changes in the levels of their mRNAs in those neurons that have been axotomized.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D014660 Vasoactive Intestinal Peptide A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE). VIP (Vasoactive Intestinal Peptide),Vasoactive Intestinal Polypeptide,Vasointestinal Peptide,Intestinal Peptide, Vasoactive,Intestinal Polypeptide, Vasoactive,Peptide, Vasoactive Intestinal,Peptide, Vasointestinal,Polypeptide, Vasoactive Intestinal

Related Publications

R P Mohney, and R E Siegel, and R E Zigmond
May 1994, Neuroscience,
R P Mohney, and R E Siegel, and R E Zigmond
April 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R P Mohney, and R E Siegel, and R E Zigmond
February 2005, Regulatory peptides,
R P Mohney, and R E Siegel, and R E Zigmond
July 1996, Regulatory peptides,
R P Mohney, and R E Siegel, and R E Zigmond
October 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!