Event-related potentials to omitted visual stimuli in a reptile. 1994

J C Prechtl, and T H Bullock
Neurobiology Unit, Scripps Institution of Oceanography, La Jolla, CA.

Visual omitted stimulus potentials (OSPs) were recorded from awake pond turtles with arrays of 3-20 electrodes in the dorsal cortex (DC), dorsal ventricular ridge (DVR) and optic tectum. Since they are generally longer in duration than the interstimulus interval (ISI), the standard experiment is a short conditioning train of regular light or dark flashes (1-20 Hz) whose termination elicits the OSP. Tectal surface OSPs after trains > 7 Hz have 2 major positive peaks, P120-140 and P220-250 after the due-time of the first omission; after < 7 Hz down to the minimum of 1.5 Hz only the slower peak appears. Some deep tectal loci also have one to three 100 msec wide negative waves peaking at variable times from 200 to 1300 msec. Forebrain OSPs in DC and DVR are approximately 30 msec later and often include induced 17-25 Hz oscillations, not phase-locked and attenuated in averages. Both tectal and forebrain OSP main waves tend toward a constant latency after the due-time, over a wide range of ISIs, as though the system expects a stimulus on schedule. Jitter of ISI around the mean does not greatly reduce the OSP. At all loci higher conditioning rates cause the amplitudes of the steady state response (SSR) VEPs to decline and of the OSPs to increase. Some similarities and correlations of regional amplitude fluctuations between OSPs and VEPs are noted. The OSP dynamics are consistent with the hypothesis of a postinhibitory rebound of temporally specific VEP components increasingly inhibited with higher stimulation rates; much of this response is retinal but each higher brain level further modulates. OSPs in this reptile are similar to those known in fish and to the "high frequency" type in humans, quite distinct in properties from the "low frequency" OSPs. It will be important to look at the high frequency type in laboratory mammals to determine whether they are present in the midbrain and retina, as in fish and reptiles.

UI MeSH Term Description Entries
D008297 Male Males
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea

Related Publications

J C Prechtl, and T H Bullock
January 1997, Electromyography and clinical neurophysiology,
J C Prechtl, and T H Bullock
January 2002, Physiological research,
J C Prechtl, and T H Bullock
February 2007, The International journal of neuroscience,
J C Prechtl, and T H Bullock
August 2014, Social cognitive and affective neuroscience,
J C Prechtl, and T H Bullock
December 2001, The Journal of experimental biology,
J C Prechtl, and T H Bullock
February 1994, Journal of clinical and experimental neuropsychology,
J C Prechtl, and T H Bullock
December 2002, Neurophysiologie clinique = Clinical neurophysiology,
J C Prechtl, and T H Bullock
January 1991, International journal of psychophysiology : official journal of the International Organization of Psychophysiology,
J C Prechtl, and T H Bullock
July 1992, Psychophysiology,
Copied contents to your clipboard!