Retinal ganglion cell survival in vitro maintained by a chondroitin sulfate proteoglycan from the superior colliculus carrying the HNK-1 epitope. 1994

K A Nichol, and A W Everett, and M Schulz, and M R Bennett
Department of Physiology, University of Sydney, N.S.W., Australia.

We recently reported evidence implicating a superior colliculus-derived chondroitin sulfate proteoglycan (SCCP) in the trophic support of cultured retinal ganglion cells (Schulz et al., 1990). In the present work we show preparations of the SCCP to be reactive with an antibody (CS-56) to chondroitin sulfate types A and C and with the HNK-1 antibody. Reaction with the HNK-1 antibody allowed us partially to purify the native proteoglycan by immunoaffinity chromatography. HNK-1 reactive material was further processed by a combination of molecular sieve chromatography in the presence of 4M guanidine HCL followed by anion exchange chromatography to yield a product that migrated electrophoretically as a single band in polyacrylamide gel with an apparent molecular weight of not less than 400 k. The SCCP, when added to a fully defined culture medium, maintained the survival of the vast majority (80%) of the ganglion cells over a 16 hr culture period with 86% of these cells showing a profusion of processes; few ganglion cells (10%) survived in the absence of the proteoglycan. Electrophoretic analysis of nonreduced preparations of the molecule did not reveal any low molecular weight silver stained components that may have remained associated with the molecule after guanidine HCL treatment. However, two bands corresponding to molecular weights of around 60 and 80 k were reproducibly observed on polyacrylamide gels following electrophoresis of the molecule in the presence of beta-mercaptoethanol. Our findings provide further evidence suggesting a role for a chondroitin sulfate proteoglycan carrying the HNK-1 epitope in the trophic support of central neurones.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011508 Chondroitin Sulfate Proteoglycans Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains. Proteochondroitin Sulfates,Chondroitin Sulfate Proteoglycan,Proteochondroitin Sulfate,Proteoglycan, Chondroitin Sulfate,Proteoglycans, Chondroitin Sulfate,Sulfate Proteoglycan, Chondroitin,Sulfate Proteoglycans, Chondroitin
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K A Nichol, and A W Everett, and M Schulz, and M R Bennett
December 1991, Development (Cambridge, England),
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
November 1994, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
August 1993, Brain research. Developmental brain research,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
September 1990, Journal of neurochemistry,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
November 1996, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
August 1994, Journal of neurochemistry,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
July 1983, Neuroscience letters,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
September 1991, The Journal of comparative neurology,
K A Nichol, and A W Everett, and M Schulz, and M R Bennett
March 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!