Beta-adrenergic stimulation disassembles microtubules in neonatal rat cultured cardiomyocytes through intracellular Ca2+ overload. 1994

M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
First Department of Medicine, Osaka University School of Medicine, Suita, Japan.

Catecholamine cardiotoxicity is attributable in part to Ca2+ overload. To test whether the cytoskeletal structures of microtubules in cardiomyocytes are reversibly injured by catecholamine through excessive Ca2+ influx, morphological changes in the microtubules of neonatal rat myocytes were studied by immunohistochemical technique during exposure to norepinephrine (NE). In intact myocytes, microtubules appeared as a filamentous network throughout the cytoplasm and around the nucleus. NE exposure (10 mumol/L) for > 30 minutes elicited microtubular disassembly in a duration-dependent fashion without any irreversible change in sarcomere structure, and this abnormality recovered within 24 hours after cessation of stimulation. Microtubular disruption scores obtained by semiquantitative assessment were significantly increased in a dose-dependent manner (10.8 +/- 4.0 in the control condition, 23.4 +/- 4.7 at 60 minutes with 10 mumol/L NE), whereas they were significantly attenuated by pretreatment with propranolol (100 mumol/L; score, 11.8 +/- 3.3) but not with phentolamine (100 mumol/L; score, 26.4 +/- 4.8). Isoproterenol (1 mumol/L) and denopamine (10 mumol/L) mimicked the effects of NE, but phenylephrine did not, indicating that NE-induced microtubular disassembly is mediated by beta 1-adrenergic receptor stimulation. This beta-adrenergic receptor-mediated insult was significantly attenuated by a decrease in Ca2+ concentration in the medium from 2 to 0.5 mmol/L and by pretreatment with diltiazem (1 mumol/L). In contrast, microtubular disassembly was induced by an increase in Ca2+ concentration in the medium and an administration of the Ca2+ ionophore A23187, even without beta-adrenergic receptor stimulation. Involvement of intracellular hypoxia and activation of Ca(2+)-calmodulin-dependent kinase or Ca(2+)-dependent neutral protease were excluded from possible mechanisms; however, inhibition of tubulin polymerization by excessive Ca2+ influx during beta-adrenergic receptor stimulation may be primarily involved. We conclude that microtubular structures that support cellular integrity are reversibly injured by beta-adrenergic receptor stimulation through excessive Ca2+ influx.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
January 2000, Journal of molecular and cellular cardiology,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
July 2004, The Journal of steroid biochemistry and molecular biology,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
September 2009, British journal of pharmacology,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
January 1997, The American journal of physiology,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
June 1996, Journal of molecular and cellular cardiology,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
April 1993, Journal of molecular and cellular cardiology,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
June 2007, Circulation journal : official journal of the Japanese Circulation Society,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
January 2000, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
February 1995, Biochemical and biophysical research communications,
M Hori, and H Sato, and M Kitakaze, and K Iwai, and H Takeda, and M Inoue, and T Kamada
January 1996, Reproduction, fertility, and development,
Copied contents to your clipboard!