Interactions between yeast TFIIIB components. 1994

J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Gif sur Yvette, France.

Yeast transcription factor TFIIIB is a multicomponent factor comprised of the TATA-binding protein TBP and of associated factors TFIIIB70 and B". Epitope-tagged or histidine-tagged TFIIIB70 could be quantitatively removed from TFIIIB by affinity chromatography. TBP and B" (apparent mass 160-200 kDa) could be easily separated by gel filtration or ion-exchange chromatography. While only weak interactions were detected between TBP and B", direct binding of [35S]-labeled TBP to membrane-bound TFIIIB70 could be demonstrated in absence of DNA. On tRNA genes, there was no basal level of transcription in the complete absence of TBP. The two characterized TFIIIB components (recombinant rTFIIIB70 and rTBP) and a fraction cochromatographing with B" activity were found to be required for TFIIIC-independent transcription of the TATA-containing U6 RNA gene in vitro. Therefore, beside the TFIIIC-dependent assembly process, each TFIIIB component must have an essential role in DNA binding or RNA polymerase recruitment.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
June 1995, The Journal of biological chemistry,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
August 1997, The EMBO journal,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
December 2008, Biochemistry,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
February 1987, Nucleic acids research,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
June 1995, The Journal of biological chemistry,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
September 2012, Chemistry Central journal,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
September 2003, Journal of molecular biology,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
January 1981, Progress in clinical and biological research,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
January 1977, Archives d'anatomie microscopique et de morphologie experimentale,
J Huet, and C Conesa, and N Manaud, and N Chaussivert, and A Sentenac
October 2018, Current genetics,
Copied contents to your clipboard!