Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. 1994

E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
Institut de Biologie Physico Chimique, Paris, France.

The Escherichia coli rpsO gene gives rise to different mRNA species resulting either from termination of transcription or from processing of primary transcripts by RNase E and RNase III. The main degradation pathway of these transcripts involves a rate-limiting RNase E cleavage downstream of the structural gene which removes the 3' terminal stem-loop structure of the transcription terminator. This structure protects the message from the attack of 3'-5' exonucleases and its removal results in very rapid degradation of the transcript by polynucleotide phosphorylase and RNase II. Polynucleotide phosphorylase is also able to degrade slowly the mRNA harboring the 3' terminal hairpin of the terminator. In contrast, RNase II appears to protect the rpsO mRNA species which retains the 3' hairpin structure. Rapid degradation of the rpsO mRNA is observed after inactivation of RNase II even in a strain deficient for RNase E and polynucleotide phosphorylase. The enzyme(s) involved in this degradation pathway is not known. We detected an unstable elongated rpsO mRNA presumably resulting from the addition of nucleotides at the 3' end of the transcript.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011117 Polyribonucleotide Nucleotidyltransferase An enzyme of the transferase class that catalyzes the reaction RNA(n+1) and orthophosphate to yield RNA(n) and a nucleoside diphosphate, or the reverse reaction. ADP, IDP, GDP, UDP, and CDP can act as donors in the latter case. (From Dorland, 27th ed) EC 2.7.7.8. Polynucleotide Phosphorylase,Nucleotidyltransferase, Polyribonucleotide,Phosphorylase, Polynucleotide
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005095 Exoribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of RNA. It includes EC 3.1.13.-, EC 3.1.14.-, EC 3.1.15.-, and EC 3.1.16.-. EC 3.1.- Exoribonuclease

Related Publications

E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
October 1988, Journal of bacteriology,
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
February 1996, Microbiology (Reading, England),
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
August 1998, The EMBO journal,
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
June 1996, Molecular microbiology,
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
August 2000, RNA (New York, N.Y.),
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
March 1996, Molecular microbiology,
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
November 2003, Molecular microbiology,
E Hajnsdorf, and O Steier, and L Coscoy, and L Teysset, and P Régnier
October 1985, Nucleic acids research,
Copied contents to your clipboard!