Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. 1994

N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
Department of Immunology and Cell Biology, Forschungsinstitut Borstel, Germany.

To detect mRNA expression of nitric oxide synthase (NOS) isoforms in human monocytes/macrophages reverse transcription polymerase chain reaction (RT-PCR) was used. mRNA was isolated from stimulated or unstimulated monocytes/macrophages and RT-PCR was performed using oligonucleotide primers derived from mRNA sequences of either human endothelial constitutive (c) or human hepatocyte inducible (i) NOS. RT-PCR of mRNA isolated from resting monocytes and macrophages resulted in the amplification of a cNOS specific mRNA fragment. When the cells were stimulated with lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) prior to mRNA extraction, RT-PCR yielded an iNOS-specific amplification product. Whereas the activation of both cell types was accompanied by expression of iNOS mRNA, the cNOS signal seemed to be diminished upon immunostimulation. Not only in purified human monocytes but also in the human monocytoid cell lines MonoMac 6, THP-1, and U937 cNOS mRNA was detected. The data clearly demonstrate the presence of iNOS and cNOS mRNA in human monocytes/macrophages and provide the necessary tools to investigate the regulation of NO synthesis in these cell populations.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000594 Amino Acid Oxidoreductases A class of enzymes that catalyze oxidation-reduction reactions of amino acids. Acid Oxidoreductases, Amino,Oxidoreductases, Amino Acid
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
May 2000, Biochemical and biophysical research communications,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
November 1997, Poultry science,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
April 1999, American journal of hypertension,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
August 2003, The Journal of pathology,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
December 1999, The Journal of physiology,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
January 2000, Life sciences,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
March 1999, Zhonghua fu chan ke za zhi,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
June 1998, Angiology,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
December 1996, Biochemical and biophysical research communications,
N Reiling, and A J Ulmer, and M Duchrow, and M Ernst, and H D Flad, and S Hauschildt
October 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!