Stem cell factor (c-kit ligand) enhances the interleukin-9-dependent proliferation of human CD34+ and CD34+CD33-DR- cells. 1994

R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
Istituto di Ematologia Seràgnoli, Università di Bologna, Italy.

We have studied the effects of recombinant human interleukin-9 (IL-9), alone and combined with stem cell factor (SCF, c-kit ligand), IL-3, and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the clonogenic proliferation of highly enriched human hematopoietic CD34+ and CD34+CD33-DR- progenitor cells. Colony assays were performed under serum-containing and serum-free conditions. IL-9, as a single agent, did not support colony formation. The addition of erythropoietin (Epo) to IL-9 induced the growth of erythroid progenitors (BFU-E) derived from both CD34+ and CD34+CD33-DR- cells. The IL-9-dependent growth of BFU-E derived from CD34+ cells was increased in an additive manner by SCF and, to a lesser extent, by IL-3, whereas CD34+CD33-DR- erythroid precursors were also responsive to GM-CSF in combination with IL-9. The addition of SCF to IL-9 did stimulate the development of CD34+ and CD34+CD33-DR- macroscopic, multicentered BFU-E and multilineage colonies (CFU-GEMM). When IL-9 was used in serum-free conditions, the growth of CD34+ and CD34+CD33-DR- BFU-E was observed in the presence of Epo. Moreover, a marked synergy on BFU-E colony formation was evident when IL-9 was combined with SCF, and their activity was enhanced by the addition of IL-3. IL-9 showed a negligible proliferative activity on colony-forming units-granulocyte/macrophage (CFU-GM). However, it increased the number of CD34+CD33-DR- CFU-GM responsive to IL-3 (37% of the colonies generated by phytohemagglutinin-stimulated lymphocyte conditioned medium [PHA-LCM]). The effects of IL-9 on CD34+CD33-DR- cells were also studied in a short-term suspension culture system, which evaluates the proliferation of progenitors earlier than day 14 CFU-C (Delta assay). In this system, IL-9 had a minimal activity on its own. In combination with SCF, however, it induced a nine-fold expansion of CD34+CD33-DR- cells, which generated a greater number of CFU-GM than BFU-E in secondary methylcellulose cultures. These experiments indicate that IL-9 induces the proliferation of very primitive human erythroid cells, and this effect is potentiated by SCF and other cytokines. Furthermore, IL-9 synergizes in vitro with the c-kit ligand in expanding the pool of early pluripotent hematopoietic progenitor cells.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006684 HLA-DR Antigens A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS. HLA-DR,Antigens, HLA-DR,HLA DR Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015214 Antigens, Differentiation, Myelomonocytic Surface antigens expressed on myeloid cells of the granulocyte-monocyte-histiocyte series during differentiation. Analysis of their reactivity in normal and malignant myelomonocytic cells is useful in identifying and classifying human leukemias and lymphomas. Differentiation Antigens, Myelomonocytic,Myelomonocytic Differentiation Antigens,Antigens, Myelomonocytic, Differentiation,Antigens, Myelomonocytic Differentiation

Related Publications

R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
December 2018, Life sciences,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
November 1991, Experimental hematology,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
January 1992, Blood,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
March 1997, British journal of haematology,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
October 2006, Molecular cancer,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
September 1995, Blood,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
May 2001, Current protocols in immunology,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
May 1992, Experimental hematology,
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
January 1997, Stem cells (Dayton, Ohio),
R M Lemoli, and A Fortuna, and M Fogli, and M R Motta, and S Rizzi, and C Benini, and S Tura
May 1992, Blood,
Copied contents to your clipboard!