Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. 1994

B Lowin, and M Hahne, and C Mattmann, and J Tschopp
Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland.

The recent generation of perforin knock-out mice has demonstrated a crucial role for the pore-forming perforin in cytolytic T-lymphocyte (CTL)-mediated cytolysis. Perforin-deficient mice failed to clear lymphocytic choriomeningitis virus in vivo, yet substantial killing activity still remained in perforin-free CTLs in vitro, indicating the presence of (a) further lytic pathway(s). Fas is an apoptosis-signalling receptor molecule on the surface of a number of different cells. Here we report that both perforin-deficient and Fas-ligand-deficient CTLs show impaired lytic activity on all target cells tested. The killing activity was completely abolished when both pathways were inactivated by using target cells from Fas-receptor-deficient lpr mice and perforin-free CTL effector cells. Fas-ligand-based killing activity was triggered upon T-cell receptor occupancy and was directed to the cognate target cell. Thus, two complementary, specific cytotoxic mechanisms are functional in CTLs, one based on the secretion of lytic proteins and one which depends on cell-surface ligand-receptor interaction.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic

Related Publications

B Lowin, and M Hahne, and C Mattmann, and J Tschopp
July 1994, Science (New York, N.Y.),
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
November 1996, Transplantation,
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
May 1996, Journal of immunology (Baltimore, Md. : 1950),
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
July 2001, Journal of immunology (Baltimore, Md. : 1950),
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
January 1990, Annual review of immunology,
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
January 1995, Current topics in microbiology and immunology,
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
November 2005, American journal of reproductive immunology (New York, N.Y. : 1989),
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
March 1997, Journal of immunology (Baltimore, Md. : 1950),
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
January 1995, Current topics in microbiology and immunology,
B Lowin, and M Hahne, and C Mattmann, and J Tschopp
March 2000, International immunology,
Copied contents to your clipboard!