Inappropriate transcription from the 5' end of the murine dihydrofolate reductase gene masks transcriptional regulation. 1994

L J Schilling, and P J Farnham
McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706.

Using the nuclear run-on assay we found that in proliferating cells the transcription rate in the 5' end of the murine dihydrofolate reductase (dhfr) gene was approximately ten-fold higher than in the 3' end of the gene, suggesting transcriptional attenuation within the dhfr gene. However, when the transcription rate was measured by pulse-labeling, the rate was uniform throughout the gene, and the 5' dhfr signal was approximately ten-fold lower relative to a control gene signal than in the run-on assay. Previously, the activity of a dhfr promoter linked to a luciferase reporter gene was shown to increase about ten-fold at the G1/S-phase boundary following stimulation of serum-starved cells. To determine if the run-on procedure would detect growth regulation of the endogenous dhfr gene, serum-starved and -stimulated NIH 3T3 cells were analyzed. Using a dhfr 5' end probe no difference in transcription rate between these growth states was detected and the dhfr 3' end probe did not detect signal above background. In a cell line that was amplified at the dhfr locus, the transcription rate in the 5' end of the gene increased less than two-fold in stimulated cells, but the rate in the 3' end of the gene increased five- to seven-fold. Therefore, the dhfr gene is growth regulated at the level of transcription, but the nuclear run-on assay was only able to detect a difference in transcription rate in the 3' end of the gene in amplified cells. We suggest that isolation of nuclei may activate dhfr transcription complexes that normally are activated only at the G1/S-phase boundary.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture

Related Publications

L J Schilling, and P J Farnham
January 1996, BioEssays : news and reviews in molecular, cellular and developmental biology,
L J Schilling, and P J Farnham
March 1993, Insect biochemistry and molecular biology,
L J Schilling, and P J Farnham
February 1982, Journal of cellular physiology,
L J Schilling, and P J Farnham
July 1986, Molecular and cellular biology,
L J Schilling, and P J Farnham
June 1985, The Journal of biological chemistry,
L J Schilling, and P J Farnham
October 1997, European journal of biochemistry,
L J Schilling, and P J Farnham
May 1986, The Journal of biological chemistry,
L J Schilling, and P J Farnham
June 1985, The Journal of biological chemistry,
Copied contents to your clipboard!