Effects of mutations at the W locus (c-kit) on inner ear pigmentation and function in the mouse. 1994

J Cable, and D Huszar, and R Jaenisch, and K P Steel
MRC Institute of Hearing Research, University Park, Nottingham, U.K.

The W locus encodes a tyrosine kinase receptor, c-kit, which affects survival of melanoblasts from the neural crest. The primary cochlear defect in Viable Dominant Spotting (Wv/Wv) mutants is a lack of melanocytes within the stria vascularis (SV) associated with an endocochlear potential (EP) close to zero and hearing impairment. In this study, we compare inner ear pigmentation with cochlear potentials in three other W alleles (Wx, Wsh, and W41) and reveal an unequivocal correlation between presence of strial melanocytes and presence of an EP. Asymmetry was common, and 8.3% of Wsh/Wx, 25% of Wsh/Wsh, 60% of W41/Wx, and 69.2% of W41/W41 ears had a pigmented stria and an EP, while the remainder had no strial melanocytes and no EP. In those mutants that partially escaped the effects of the mutation, strial melanocytes rarely extended the entire length of the stria, but were confined to the middle and/or basal turns of the cochlea. The extent of strial pigmentation was unrelated to the EP value, which was measured from the basal turn only. Compound action potential (CAP) responses recorded from ears with an EP were variable and they showed greatly raised thresholds or were absent in all ears where the EP was close to zero. In controls, melanocytes in the vestibular part of the ear were found in the utricle, crus commune, and ampullae, whereas in many mutants only one or two of these regions were pigmented. There was a broad correlation between pigmentation of the stria and pigmentation of the vestibular region but this was not absolute. All W41/Wx, Wsh/Wsh, and W41/W41 mutants had some pigment on the pinna but, in contrast to controls where melanocytes were found in the epidermis and dermis of the pinna, pigment cells were reduced in number and generally restricted to the dermis. Injection of normal neural crest cells into 9.5-day-old mutant embryos increased the extent of skin pigmentation on the head and coat of adult chimeras and was associated with a small increase in the proportion of pigmented strias.

UI MeSH Term Description Entries
D008544 Melanocytes Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES. Melanocyte
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D009432 Neural Crest The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE. Neural Crest Cells,Neural Fold,Neural Groove,Cell, Neural Crest,Cells, Neural Crest,Crest, Neural,Crests, Neural,Fold, Neural,Folds, Neural,Groove, Neural,Grooves, Neural,Neural Crest Cell,Neural Crests,Neural Folds,Neural Grooves
D010859 Pigmentation Disorders Diseases affecting PIGMENTATION, including SKIN PIGMENTATION. Incontinentia Pigmenti Achromians,Ito Syndrome,Schamberg's Disease,Schamberg Disease,Disease, Schamberg,Disease, Schamberg's,Disorder, Pigmentation,Disorders, Pigmentation,Pigmentation Disorder,Schambergs Disease,Syndrome, Ito
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid

Related Publications

J Cable, and D Huszar, and R Jaenisch, and K P Steel
January 1990, Ciba Foundation symposium,
J Cable, and D Huszar, and R Jaenisch, and K P Steel
December 1990, Development (Cambridge, England),
J Cable, and D Huszar, and R Jaenisch, and K P Steel
October 1988, Cell,
J Cable, and D Huszar, and R Jaenisch, and K P Steel
December 1991, Nucleic acids research,
J Cable, and D Huszar, and R Jaenisch, and K P Steel
January 1993, Acta oto-laryngologica. Supplementum,
J Cable, and D Huszar, and R Jaenisch, and K P Steel
April 1995, Mechanisms of development,
J Cable, and D Huszar, and R Jaenisch, and K P Steel
March 1991, Nucleic acids research,
J Cable, and D Huszar, and R Jaenisch, and K P Steel
September 1988, Nature,
Copied contents to your clipboard!