Transport of polypeptide ionophores into proteoliposomes reconstituted with rat liver P-glycoprotein. 1994

G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
Department of Biology, Technion-Israel Institute of Technology, Haifa.

The aim of this study was to examine the peptide transport activity of a naturally occurring P-glycoprotein such as that present in rat liver canalicular membrane vesicles. The peptide ionophores valinomycin and gramicidin D, which are known substrates of P-glycoprotein, served to monitor the P-glycoprotein activity indirectly as the ATP-dependent uptake of 86Rb+ mediated by these ionophores. Canalicular membrane vesicles proved inherently permeable to K+ ions, which prevented assay of transport ionophore activity. Therefore, P-glycoprotein was extracted from canalicular membrane vesicles and reconstituted into proteoliposomes that are relatively impermeable to cations. P-glycoprotein activity in the proteoliposomes was dependent on ATP hydrolysis since it was not observed with non-hydrolyzable analogs of ATP. Maximal ATP-dependent 86Rb+ uptake occurred at 50 nM gramicidin D and at 500 nM valinomycin thus possibly reflecting higher affinity of P-glycoprotein for gramicidin D. Nigericin, which does not participate in the multidrug resistance phenomenon, did not support an ATP-dependent uptake of 86Rb+. ATP hydrolysis increased the amount of 86RB+ transported into the proteoliposomes. Furthermore, preincubation of the proteoliposomes in the presence of gramicidin D and 86Rb+, allowing for maximal ATP-independent 86Rb+ uptake to occur, did not interfere with subsequent ATP-dependent uptake, indicating the latter to constitute an active transport mechanism. The ATP-dependent component of 86Rb+ uptake occurred neither with liposomes nor with proteoliposomes reconstituted with proteins extracted from sinusoidal vesicles that lack P-glycoprotein. The ATP-dependent uptake was blocked by the known inhibitors of the ATPase activity associated with P-glycoprotein, oligomycin and vanadate, as well as by its established substrates, daunorubicin, doxorubicin, vinblastine, and the tripeptide N-acetyl-leucyl-leucyl-norleucinal. Thus, the reconstituted P-glycoprotein catalyzes the ATP-dependent 86Rb+ uptake that appears to occur by an energy-dependent translocation of the 86Rb(+)-ionophore complex. In this case, the actual substrate of P-glycoprotein is the ionophore-cation complex, which is both hydrophobic and positively charged as are most of the substrates of P-glycoprotein. This is the first demonstration of transport of a naturally occurring polypeptide by proteoliposomes reconstituted with physiologically expressed P-glycoprotein.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D006096 Gramicidin A group of peptide antibiotics from BACILLUS brevis. Gramicidin C or S is a cyclic, ten-amino acid polypeptide and gramicidins A, B, D are linear. Gramicidin is one of the two principal components of TYROTHRICIN. Gramicidin A,Gramicidin A(1),Gramicidin B,Gramicidin C,Gramicidin D,Gramicidin Dubos,Gramicidin J,Gramicidin K,Gramicidin NF,Gramicidin P,Gramicidin S,Gramicidins,Gramoderm,Linear Gramicidin,Gramicidin, Linear
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012414 Rubidium Radioisotopes Unstable isotopes of rubidium that decay or disintegrate emitting radiation. Rb atoms with atomic weights 79-84, and 86-95 are radioactive rubidium isotopes. Radioisotopes, Rubidium
D014634 Valinomycin A cyclododecadepsipeptide ionophore antibiotic produced by Streptomyces fulvissimus and related to the enniatins. It is composed of 3 moles each of L-valine, D-alpha-hydroxyisovaleric acid, D-valine, and L-lactic acid linked alternately to form a 36-membered ring. (From Merck Index, 11th ed) Valinomycin is a potassium selective ionophore and is commonly used as a tool in biochemical studies.
D014700 Verapamil A calcium channel blocker that is a class IV anti-arrhythmia agent. Iproveratril,Calan,Cordilox,Dexverapamil,Falicard,Finoptin,Isoptin,Isoptine,Izoptin,Lekoptin,Verapamil Hydrochloride,Hydrochloride, Verapamil

Related Publications

G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
January 1985, Journal of ultrastructure research,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
March 2001, European journal of biochemistry,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
February 1990, The Journal of membrane biology,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
July 2000, FEBS letters,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
July 1979, Biochemical and biophysical research communications,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
March 1994, The Journal of biological chemistry,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
May 1982, Biochimica et biophysica acta,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
November 1993, The Journal of biological chemistry,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
February 1997, Biochemical pharmacology,
G D Eytan, and M J Borgnia, and R Regev, and Y G Assaraf
May 1995, The Journal of biological chemistry,
Copied contents to your clipboard!