Increased initial levels of chromosome damage and heterogeneous chromosome repair in ataxia telangiectasia heterozygote cells. 1994

T K Pandita, and W N Hittelman
Department of Clinical Investigation, University of Texas M.D. Anderson Cancer Center, Houston 77030.

Individuals heterozygous for ataxia telangiectasia (AT) appear clinically normal but have a 2-3-fold overall excess risk of cancer. Various approaches have been used to identify AT heterozygotes, however, the results are ambiguous. We recently reported that AT homozygotes exhibit more initial chromosome damage after irradiation than normal cells despite identical levels of DNA double strand breaks (DSBs) as well as a reduced fast repair component at both the DNA and chromosome levels. To determine whether AT heterozygotes exhibit the AT or normal cellular phenotype, we compared four AT heterozygote lymphoblastoid cell lines with normal control and AT homozygote lymphoblastoid cells with regard to cell survival, initial levels of damage, and repair at the DNA and chromosome levels after gamma-irradiation in G1, S, and G2 phase (estimated by neutral DNA filter elution and premature chromosome condensation). There was no significant difference in survival, induction and repair of DNA DSBs, or chromosome repair between AT heterozygote and normal cells. In contrast, all four AT heterozygote cell lines showed increased levels of chromosome damage; G1 phase cells showed intermediate levels and G2 phase cells showed levels equivalent to the AT homozygote phenotype. These results suggest that premature chromosome condensation may be useful for detecting AT heterozygotes.

UI MeSH Term Description Entries
D008297 Male Males
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D002877 Chromosomes, Human Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual. Chromosome, Human,Human Chromosome,Human Chromosomes
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005260 Female Females
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear

Related Publications

T K Pandita, and W N Hittelman
April 1982, Biulleten' eksperimental'noi biologii i meditsiny,
T K Pandita, and W N Hittelman
April 1986, Cancer research,
T K Pandita, and W N Hittelman
August 1984, International journal of radiation biology and related studies in physics, chemistry, and medicine,
T K Pandita, and W N Hittelman
June 1996, Lancet (London, England),
T K Pandita, and W N Hittelman
February 1984, Radiation research,
T K Pandita, and W N Hittelman
September 1980, The Journal of pediatrics,
T K Pandita, and W N Hittelman
March 1970, Lancet (London, England),
Copied contents to your clipboard!