Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. 1994

L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
Department of Psychiatry, SUNY, Stony Brook, NY 11794.

The patterns of projections from the hamster suprachiasmatic nucleus, retrochiasmatic area and subpraventricular hypothalamic zone were examined using anterograde tracing with the plant lectin, Phaseolus vulgaris leucoagglutinin. Suprachiasmatic nucleus efferents comprise four major fiber groups: (i) an anterior projection to the ventral lateral septum, the bed nucleus of the stria terminalis and anterior paraventricular thalmus; (ii) a periventricular hypothalamic projection extending from the preoptic region to the premammillary area; (iii) a lateral thalamic projection to the intergeniculate leaflet and ventral lateral geniculate; and (iv) a posterior projection to the posterior paraventricular thalamus, precommissural nucleus and olivary pretectal nucleus. The retrochiasmatic area showed a similar projection pattern with several major exceptions. There are projections to endopiriform cortex, fundus striati, ventral pallidum, horizontal limb of the nucleus of the diagonal band and three separate routes to the amygdala. There are also projections laterally with fibers of the supraoptic commissures, which enter the superior thalamic radiation and innervate the caudal dorsomedial thalamic nuclei. Other fibers traveling with the commissures terminate in the ventral zona incerta. The subparaventricular zone projects to most targets of the suprachiasmatic nucleus, but not to the intergeniculate leaflet. There is a substantial input to both the subparaventricular zone and retrochiasmatic area from the suprachiasmatic nucleus, but little apparent reciprocity. There is extensive overlap of suprachiasmatic nuclei and retrochiasmatic efferents, and between retrochiasmatic and known medial amygdaloid efferents. The anatomical information is discussed in the context of circadian rhythm regulation, photoperiodism and chemosensory pathways controlling male hamster reproductive behavior.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D008326 Mammillary Bodies A pair of nuclei and associated GRAY MATTER in the interpeduncular space rostral to the posterior perforated substance in the POSTERIOR HYPOTHALAMUS. Mamillary Bodies,Bodies, Mamillary,Bodies, Mammillary,Body, Mamillary,Body, Mammillary,Mamillary Body,Mammillary Body
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain

Related Publications

L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
June 2007, Brain research,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
January 2011, Brain research,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
June 1993, The Journal of comparative neurology,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
January 2004, Neuroscience,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
January 1989, Biology of reproduction,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
June 1987, Brain research bulletin,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
February 2002, Journal of biological rhythms,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
December 2015, The Journal of comparative neurology,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
June 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L P Morin, and N Goodless-Sanchez, and L Smale, and R Y Moore
December 2003, Neuroscience letters,
Copied contents to your clipboard!