Experimental lumbar radiculopathy. Immunohistochemical and quantitative demonstrations of pain induced by lumbar nerve root irritation of the rat. 1994

M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
Department of Orthopedic Surgery, Wakayama Medical College, Japan.

OBJECTIVE A series of experiments were designed to develop and validate an animal model of lumbar radiculopathy. More specifically, these investigations introduced a model of chronic neuropathic pain in the rat associated with clinically relevant lumbar nerve root trauma and evaluated the ability of the model to effect symptoms and begin to understand the underlying neurochemical and neurophysiologic factors associated with these neurologic abnormalities. BACKGROUND A search of the literature suggested that these studies were a first attempt to distinguish and elucidate an experimental lumbar radiculopathy. METHODS Two basic approaches to nerve trauma were considered, direct damage to the nerve via compression, and introduction of foreign materials in proximity to the nerve root that might cause irritation and inflammation leading to chronic symptoms. Ligature around the nerve (i.e., surrounding the nerve with a suture) was considered a plausible irritant that might behave in an animal model in a similar way that nerve root entrapment, often observed in HNP and stenosis cases, might function in humans. Further, varying levels of irritation was modeled by using 4-0 silk as a mild and 4-0 chromic gut as a more harsh irritant. METHODS Five distinct treatments of the nerve roots were investigated initially: 1) a sham intervention, where the surgery simply exposed the nerve roots and dorsal root ganglion followed by standard closing procedures; 2) nerve root clipping, where the nerve roots were clipped with a microhemoclip; 3) 4-0 silk ligature, where two loose ligatures of 4-0 silk were placed around the nerve roots; 4) 4-0 chromic gut 1, where one loose ligature of 4-0 chromic gut was placed around the nerve roots; and 5) 4-0 chromic gut 2, where four 0.3 cm pieces of 4-0 chromic gut were laid adjacent to the nerve roots and secured by two loose ligatures of 4-0 chromic gut. ANOVA techniques were used to test for differential effects across time for the five treatment groups in terms of animal function and biochemistry in the DRG. RESULTS Rats treated with chromic gut ligature in large quantity demonstrated differential patterns of results on the injured and noninjured sides consistent with a lumbar radiculopathy. The injured side demonstrated significantly worse thermal hyperalgesia related to neuropathic pain (P < 0.0001); initial mechanical hypoalgesia (P < .001), and motor dysfunction (P < .001) resolving within 2 weeks; significantly increased c-fos counts (P < .0001) 2 weeks postoperatively, which showed a consistent trend toward baseline and return to baseline by 12 weeks; significantly greater and highly increased VIP concentrations in the dorsal root ganglia 2 weeks postoperatively (P < .0001) that did not resolve or tend towards baseline after 12 weeks of follow-up in conjunction with a trend toward VIP depletion in the spinal cord 2 weeks postoperatively that did resolve to baseline until a 12-week concentration indicated a significant increase in concentration (P < .002). Quantitative and qualitative changes in c-fos and VIP, correlated with the patterns of behavior and function. Thus, for the first time, evidence to link outcome behaviors and function with underlying neurochemical processes is suggested. CONCLUSIONS When the same apparent conditions can be demonstrated in some situations to be causing pain and in other situations to be independent of pain, some additional factor or factors not considered in the original investigations may be mediating the outcome. Neurochemical consequences of nerve root irritation provide a theoretical framework for hypothesizing about various types of mediating events that might explain how similar apparent pathology might reasonably lead to different predictions about behavior consequences of the pathology.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009408 Nerve Compression Syndromes Mechanical compression of nerves or nerve roots from internal or external causes. These may result in a conduction block to nerve impulses (due to MYELIN SHEATH dysfunction) or axonal loss. The nerve and nerve sheath injuries may be caused by ISCHEMIA; INFLAMMATION; or a direct mechanical effect. Entrapment Neuropathies,Nerve Entrapments,External Nerve Compression Syndromes,Internal Nerve Compression Syndromes,Nerve Compression Syndromes, External,Nerve Compression Syndromes, Internal,Compression Syndrome, Nerve,Compression Syndromes, Nerve,Entrapment, Nerve,Entrapments, Nerve,Nerve Compression Syndrome,Nerve Entrapment,Neuropathies, Entrapment,Neuropathy, Entrapment,Syndrome, Nerve Compression,Syndromes, Nerve Compression
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010243 Paralysis A general term most often used to describe severe or complete loss of muscle strength due to motor system disease from the level of the cerebral cortex to the muscle fiber. This term may also occasionally refer to a loss of sensory function. (From Adams et al., Principles of Neurology, 6th ed, p45) Palsy,Plegia,Todd Paralysis,Todd's Paralysis,Palsies,Paralyses,Paralysis, Todd,Paralysis, Todd's,Plegias,Todds Paralysis
D010523 Peripheral Nervous System Diseases Diseases of the peripheral nerves external to the brain and spinal cord, which includes diseases of the nerve roots, ganglia, plexi, autonomic nerves, sensory nerves, and motor nerves. Peripheral Nerve Diseases,Peripheral Neuropathies,PNS (Peripheral Nervous System) Diseases,PNS Diseases,Peripheral Nervous System Disease,Peripheral Nervous System Disorders,Nerve Disease, Peripheral,Nerve Diseases, Peripheral,Neuropathy, Peripheral,PNS Disease,Peripheral Nerve Disease,Peripheral Neuropathy
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013126 Spinal Nerve Roots Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS. Dorsal Roots,Spinal Roots,Ventral Roots,Dorsal Root,Nerve Root, Spinal,Nerve Roots, Spinal,Root, Dorsal,Root, Spinal,Root, Spinal Nerve,Root, Ventral,Roots, Dorsal,Roots, Spinal,Roots, Spinal Nerve,Roots, Ventral,Spinal Nerve Root,Spinal Root,Ventral Root

Related Publications

M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
January 1961, Clinical orthopaedics,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
November 2015, Malaysian orthopaedic journal,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
February 2010, AJNR. American journal of neuroradiology,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
March 1989, Annals of the Royal College of Surgeons of England,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
January 1989, Annals of the Royal College of Surgeons of England,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
September 1988, Annals of the Royal College of Surgeons of England,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
November 2002, Brain research,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
March 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
January 2004, Regional anesthesia and pain medicine,
M Kawakami, and J N Weinstein, and K F Spratt, and K Chatani, and R J Traub, and S T Meller, and G F Gebhart
December 2016, Hiroshima journal of medical sciences,
Copied contents to your clipboard!