A voltage-sensitive cation channel present in clusters in lobster skeletal muscle membrane. 1994

M K Worden, and R Rahamimoff, and E A Kravitz
Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville 22908.

The single channel properties of a voltage-sensitive cation channel are described in a study of ion channel activity in enzymatically induced blebs of lobster skeletal muscle membrane. This cation channel, one of several that are spontaneously active in excised patches from bleb membrane, can be distinguished from other channels on the basis of its large single channel conductance (293 pS), voltage-sensitive gating properties, the presence of a subconductance state of the fully open channel, and a weak selectivity for K > Na. At hyperpolarizing voltages, this channel displays flickering or bursting behavior, and a single state of the fully open channel is observed. At depolarizing voltages, the mean channel open time increases and a second longer-lived open state is observed. The voltage dependence of the mean channel open time and the linear i-V relation of this channel predict that the macroscopic current carried through this cation channel would be outwardly rectifying. Channels of this type are infrequently observed in this preparation, but when present in the patch are often present in multiple copies. We describe a statistical test for examining the clustering of ion channels in excised patches of membrane. The result of this test shows that the cation channels appear in clusters in the blebs.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

M K Worden, and R Rahamimoff, and E A Kravitz
January 1985, Nature,
M K Worden, and R Rahamimoff, and E A Kravitz
October 1984, Proceedings of the National Academy of Sciences of the United States of America,
M K Worden, and R Rahamimoff, and E A Kravitz
March 1997, The Journal of general physiology,
M K Worden, and R Rahamimoff, and E A Kravitz
February 1987, The Journal of biological chemistry,
M K Worden, and R Rahamimoff, and E A Kravitz
June 1983, The Journal of biological chemistry,
M K Worden, and R Rahamimoff, and E A Kravitz
October 1988, Tsitologiia,
M K Worden, and R Rahamimoff, and E A Kravitz
December 1988, European journal of biochemistry,
M K Worden, and R Rahamimoff, and E A Kravitz
March 1987, Journal of neurochemistry,
M K Worden, and R Rahamimoff, and E A Kravitz
May 1991, Biochemical and biophysical research communications,
Copied contents to your clipboard!